Skip to main content

Advertisement

Log in

Role of gamma-delta T-cells in cancer. Another opening door to immunotherapy

  • Educational Series – Red Series*
  • NEW TRENDS IN CLINICAL ONCOLOGY
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

The gamma-delta (γδ) T-cells are a subset of T-lymphocytes characterized by the presence of a surface antigen recognition complex type 2. Those γδ T-cells represent 2–5 % of peripheral T-cells only, but they are common in organs and mucosae, acting as a first defense system in the entries to the organism. The γδ T-cells take part on immune response by direct cytolysis, development of memory phenotypes, and modulation of immune cells, and they have been implied in autoimmune disorders, immune deficiencies, infections, and tumor diseases. We reported the role of γδ T-cells in oncology, focusing in their potential applications for cancer treatment. Experimental designs and clinical trials in the treatment of solid malignancies are extensively reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acuto O, Hussey RE, Fitzgerald KA, Protentis JP, Meuer SC, Schlossman SF et al (1983) The human T cell receptor: appearance in ontogeny and biochemical relationship of α and β subunits on IL-2 dependent clones and T cell tumors. Cell 34(3):717–726

    Article  PubMed  CAS  Google Scholar 

  2. Chien YH, Iwashima M, Kaplan KB, Elliott JF, Davis MM (1987) A new T-cell receptor gene located within the alpha locus and expressed early in T-cell differentiation. Nature 327(6124):677–682

    Article  PubMed  CAS  Google Scholar 

  3. Hochstenbach F, Brenner MB (1990) Newly identified gamma delta and beta delta T-cell receptors. J Clin Immunol 10(1):1–18

    Article  PubMed  CAS  Google Scholar 

  4. Porcelli S, Morita CT, Brenner MB (1992) CD1b restricts the response of human CD4-8- T lymphocytes to a microbial antigen. Nature 360(6404):593–597

    Article  PubMed  CAS  Google Scholar 

  5. Hayday AC (2000) [Gamma][delta] cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 18:975–1026

    Article  PubMed  CAS  Google Scholar 

  6. Itohara S, Nakanishi N, Kanagawa O, Kubo R, Tonegawa S (1989) Monoclonal antibodies specific to native murine T-cell receptor gamma delta: analysis of gamma delta T cells during thymic ontogeny and in peripheral lymphoid organs. Proc Natl Acad Sci USA 86(13):5094–5098

    Article  PubMed  CAS  Google Scholar 

  7. Hayday A, Theodoridis E, Ramsburg E, Shires J (2001) Intraepithelial lymphocytes: exploring the Third Way in immunology. Nat Immunol 2(11):997–1003

    Article  PubMed  CAS  Google Scholar 

  8. Sanchez-Garcia J, Atkins C, Pasvol G, Wilkinson RJ, Colston MJ (1996) Antigen-driven shedding of l-selectin from human gamma delta T cells. Immunology 89(2):213–219

    Article  PubMed  CAS  Google Scholar 

  9. Das H, Groh V, Kuijl C, Sugita M, Morita CT, Spies T et al (2001) MICA engagement by human Vgamma2Vdelta2 T cells enhances their antigen-dependent effector function. Immunity 15(1):83–93

    Article  PubMed  CAS  Google Scholar 

  10. Kong Y, Cao W, Xi X, Ma C, Cui L, He W (2009) The NKG2D ligand ULBP4 binds to TCRgamma9/delta2 and induces cytotoxicity to tumor cells through both TCRgammadelta and NKG2D. Blood 114(2):310–317

    Article  PubMed  CAS  Google Scholar 

  11. Nedellec S, Sabourin C, Bonneville M, Scotet E (2010) NKG2D costimulates human V gamma 9V delta 2 T cell antitumor cytotoxicity through protein kinase C theta-dependent modulation of early TCR-induced calcium and transduction signals. J Immunol 185(1):55–63

    Article  PubMed  CAS  Google Scholar 

  12. Scotet E, Martinez LO, Grant E, Barbaras R, Jeno P, Guiraud M et al (2005) Tumor recognition following Vgamma9Vdelta2 T cell receptor interactions with a surface F1-ATPase-related structure and apolipoprotein A-I. Immunity 22(1):71–80

    Article  PubMed  CAS  Google Scholar 

  13. Kunzmann V, Bauer E, Feurle J, Weissinger F, Tony HP, Wilhelm M (2000) Stimulation of gammadelta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 96(2):384–392

    PubMed  CAS  Google Scholar 

  14. Hirsh MI, Hashiguchi N, Chen Y, Yip L, Junger WG (2006) Surface expression of HSP72 by LPS-stimulated neutrophils facilitates gammadeltaT cell-mediated killing. Eur J Immunol 36(3):712–721

    Article  PubMed  CAS  Google Scholar 

  15. Mookerjee-Basu J, Vantourout P, Martinez LO, Perret B, Collet X, Perigaud C et al (2010) F1-adenosine triphosphatase displays properties characteristic of an antigen presentation molecule for Vgamma9Vdelta2 T cells. J Immunol 184(12):6920–6928

    Article  PubMed  CAS  Google Scholar 

  16. Bonneville M, Fournie JJ (2005) Sensing cell stress and transformation through Vgamma9Vdelta2 T cell-mediated recognition of the isoprenoid pathway metabolites. Microbes Infect 7(3):503–509

    Article  PubMed  CAS  Google Scholar 

  17. Toutirais O, Cabillic F, Le Friec G, Salot S, Loyer P, Le Gallo M et al (2009) DNAX accessory molecule-1 (CD226) promotes human hepatocellular carcinoma cell lysis by Vgamma9Vdelta2 T cells. Eur J Immunol 39(5):1361–1368

    Article  PubMed  CAS  Google Scholar 

  18. Ponomarev ED, Dittel BN (2005) Gamma delta T cells regulate the extent and duration of inflammation in the central nervous system by a Fas ligand-dependent mechanism. J Immunol 174(8):4678–4687

    PubMed  CAS  Google Scholar 

  19. Bonneville M, Scotet E (2006) Human Vgamma9Vdelta2 T cells: promising new leads for immunotherapy of infections and tumors. Curr Opin Immunol 18(5):539–546

    Article  PubMed  CAS  Google Scholar 

  20. Angelini DF, Borsellino G, Poupot M, Diamantini A, Poupot R, Bernardi G et al (2004) FcgammaRIII discriminates between 2 subsets of Vgamma9Vdelta2 effector cells with different responses and activation pathways. Blood 104(6):1801–1807

    Article  PubMed  CAS  Google Scholar 

  21. Tokuyama H, Hagi T, Mattarollo SR, Morley J, Wang Q, So HF et al (2008) V gamma 9V delta 2 T cell cytotoxicity against tumor cells is enhanced by monoclonal antibody drugs–rituximab and trastuzumab. Int J Cancer 122(11):2526–2534

    Article  PubMed  CAS  Google Scholar 

  22. Brandes M, Willimann K, Moser B (2005) Professional antigen-presentation function by human gammadelta T Cells. Science 309(5732):264–268

    Article  PubMed  CAS  Google Scholar 

  23. Himoudi N, Morgenstern DA et al (2012) Human γδ T lymphocytes are licensed for professional antigen presentation by interaction with opsonized target cells. J Immunol 188(4):1708–1716

    Article  PubMed  CAS  Google Scholar 

  24. Lai X, Shen Y, Zhou D, Sehgal P, Shen L, Simon M et al (2003) Immune biology of macaque lymphocyte populations during mycobacterial infection. Clin Exp Immunol 133(2):182–192

    Article  PubMed  CAS  Google Scholar 

  25. Kamath AB, Wang L, Das H, Li L, Reinhold VN, Bukowski JF (2003) Antigens in tea-beverage prime human Vgamma 2Vdelta 2 T cells in vitro and in vivo for memory and nonmemory antibacterial cytokine responses. Proc Natl Acad Sci USA 100(10):6009–6014

    Article  PubMed  CAS  Google Scholar 

  26. Dieli F, Poccia F, Lipp M, Sireci G, Caccamo N, Di Sano C et al (2003) Differentiation of effector/memory Vdelta2 T cells and migratory routes in lymph nodes or inflammatory sites. J Exp Med 198(3):391–397

    Article  PubMed  CAS  Google Scholar 

  27. Caccamo N, Meraviglia S, Ferlazzo V, Angelini D, Borsellino G, Poccia F et al (2005) Differential requirements for antigen or homeostatic cytokines for proliferation and differentiation of human Vgamma9Vdelta2 naive, memory and effector T cell subsets. Eur J Immunol 35(6):1764–1772

    Article  PubMed  CAS  Google Scholar 

  28. Turner J, Dockrell HM (1996) Stimulation of human peripheral blood mononuclear cells with live Mycobacterium bovis BCG activates cytolytic CD8+ T cells in vitro. Immunology 87(3):339–342

    Article  PubMed  CAS  Google Scholar 

  29. Poccia F, Agrati C, Castilletti C, Bordi L, Gioia C, Horejsh D et al (2006) Anti-severe acute respiratory syndrome coronavirus immune responses: the role played by V gamma 9V delta 2 T cells. J Infect Dis 193(9):1244–1249

    Article  PubMed  CAS  Google Scholar 

  30. Agrati C, Alonzi T, De Santis R, Castilletti C, Abbate I, Capobianchi MR et al (2006) Activation of Vgamma9Vdelta2 T cells by non-peptidic antigens induces the inhibition of subgenomic HCV replication. Int Immunol 18(1):11–18

    Article  PubMed  CAS  Google Scholar 

  31. Kistowska M, Rossy E, Sansano S, Gober HJ, Landmann R, Mori L et al (2008) Dysregulation of the host mevalonate pathway during early bacterial infection activates human TCR gamma delta cells. Eur J Immunol 38(8):2200–2209

    Article  PubMed  CAS  Google Scholar 

  32. Alexander AA, Maniar A, Cummings JS, Hebbeler AM, Schulze DH, Gastman BR et al (2008) Isopentenyl pyrophosphate-activated CD56+ {gamma}{delta T lymphocytes display potent antitumor activity toward human squamous cell carcinoma. Clin Cancer Res 14(13):4232–4240

    Article  PubMed  CAS  Google Scholar 

  33. Wrobel P, Shojaei H, Schittek B, Gieseler F, Wollenberg B, Kalthoff H et al (2007) Lysis of a broad range of epithelial tumour cells by human gamma delta T cells: involvement of NKG2D ligands and T-cell receptor- versus NKG2D-dependent recognition. Scand J Immunol 66(2–3):320–328

    Article  PubMed  CAS  Google Scholar 

  34. Mattarollo SR, Kenna T, Nieda M, Nicol AJ (2007) Chemotherapy and zoledronate sensitize solid tumour cells to Vgamma9Vdelta2 T cell cytotoxicity. Cancer Immunol Immunother 56(8):1285–1297

    Article  PubMed  CAS  Google Scholar 

  35. Burjanadze M, Condomines M, Reme T, Quittet P, Latry P, Lugagne C et al (2007) In vitro expansion of gamma delta T cells with anti-myeloma cell activity by Phosphostim and IL-2 in patients with multiple myeloma. Br J Haematol 139(2):206–216

    Article  PubMed  CAS  Google Scholar 

  36. Pages F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R et al (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353(25):2654–2666

    Article  PubMed  CAS  Google Scholar 

  37. Corvaisier M, Moreau-Aubry A, Diez E, Bennouna J, Mosnier JF, Scotet E et al (2005) V gamma 9 V delta 2 T cell response to colon carcinoma cells. J Immunol 175(8):5481–5488

    PubMed  CAS  Google Scholar 

  38. Viey E, Fromont G, Escudier B, Morel Y, Da Rocha S, Chouaib S et al (2005) Phosphostim-activated gamma delta T cells kill autologous metastatic renal cell carcinoma. J Immunol 174(3):1338–1347

    PubMed  CAS  Google Scholar 

  39. Viey E, Lucas C, Romagne F, Escudier B, Chouaib S, Caignard A (2008) Chemokine receptors expression and migration potential of tumor-infiltrating and peripheral-expanded Vgamma9Vdelta2 T cells from renal cell carcinoma patients. J Immunother 31(3):313–323

    Article  PubMed  CAS  Google Scholar 

  40. Liu Z, Eltoum IE, Guo B, Beck BH, Cloud GA, Lopez RD (2008) Protective immunosurveillance and therapeutic antitumor activity of gammadelta T cells demonstrated in a mouse model of prostate cancer. J Immunol 180(9):6044–6053

    PubMed  CAS  Google Scholar 

  41. Yuasa T, Sato K, Ashihara E, Takeuchi M, Maita S, Tsuchiya N et al (2009) Intravesical administration of gammadelta T cells successfully prevents the growth of bladder cancer in the murine model. Cancer Immunol Immunother 58(4):493–502

    Article  PubMed  CAS  Google Scholar 

  42. Simoni D, Gebbia N, Invidiata FP, Eleopra M, Marchetti P, Rondanin R et al (2008) Design, synthesis, and biological evaluation of novel aminobisphosphonates possessing an in vivo antitumor activity through a gammadelta-T lymphocytes-mediated activation mechanism. J Med Chem 51(21):6800–6807

    Article  PubMed  CAS  Google Scholar 

  43. Boedec A, Sicard H, Dessolin J, Herbette G, Ingoure S, Raymond C et al (2008) Synthesis and biological activity of phosphonate analogs and geometric isomers of the highly potent phosphoantigen (E)-1-hydroxy-2-methylbut-2-enyl 4-diphosphate. J Med Chem 51(6):1747–1754

    Article  PubMed  CAS  Google Scholar 

  44. Das H, Wang L, Kamath A, Bukowski JF (2001) Vgamma2Vdelta2 T-cell receptor-mediated recognition of aminobisphosphonates. Blood 98(5):1616–1618

    Article  PubMed  CAS  Google Scholar 

  45. Monkkonen H, Ottewell PD, Kuokkanen J, Monkkonen J, Auriola S, Holen I (2007) Zoledronic acid-induced IPP/ApppI production in vivo. Life Sci 81(13):1066–1070

    Article  PubMed  Google Scholar 

  46. Caccamo N, Meraviglia S, Cicero G, Gulotta G, Moschella F, Cordova A et al (2008) Aminobisphosphonates as new weapons for gammadelta T Cell-based immunotherapy of cancer. Curr Med Chem 15(12):1147–1153

    Article  PubMed  CAS  Google Scholar 

  47. Sicard H, Ingoure S, Luciani B, Serraz C, Fournie JJ, Bonneville M et al (2005) In vivo immunomanipulation of V gamma 9V delta 2 T cells with a synthetic phosphoantigen in a preclinical nonhuman primate model. J Immunol 175(8):5471–5480

    PubMed  CAS  Google Scholar 

  48. Ali Z, Shao L, Halliday L, Reichenberg A, Hintz M, Jomaa H et al (2007) Prolonged (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate-driven antimicrobial and cytotoxic responses of pulmonary and systemic Vgamma2Vdelta2 T cells in macaques. J Immunol 179(12):8287–8296

    PubMed  CAS  Google Scholar 

  49. Vermijlen D, Ellis P, Langford C, Klein A, Engel R, Willimann K et al (2007) Distinct cytokine-driven responses of activated blood gammadelta T cells: insights into unconventional T cell pleiotropy. J Immunol 178(7):4304–4314

    PubMed  CAS  Google Scholar 

  50. Shojaei H, Oberg HH, Juricke M, Marischen L, Kunz M, Mundhenke C et al (2009) Toll-like receptors 3 and 7 agonists enhance tumor cell lysis by human gammadelta T cells. Cancer Res 69(22):8710–8717

    Article  PubMed  CAS  Google Scholar 

  51. Sato K, Kimura S, Segawa H, Yokota A, Matsumoto S, Kuroda J et al (2005) Cytotoxic effects of gammadelta T cells expanded ex vivo by a third generation bisphosphonate for cancer immunotherapy. Int J Cancer 116(1):94–99

    Article  PubMed  CAS  Google Scholar 

  52. Casetti R, Perretta G, Taglioni A, Mattei M, Colizzi V, Dieli F et al (2005) Drug-induced expansion and differentiation of V gamma 9V delta 2 T cells in vivo: the role of exogenous IL-2. J Immunol 175(3):1593–1598

    PubMed  CAS  Google Scholar 

  53. Gutman D, Epstein-Barash H, Tsuriel M, Golomb G (2012) Alendronate liposomes for antitumor therapy: activation of γδ T cells and inhibition of tumor growth. Adv Exp Med Biol 733:165–179

    Article  PubMed  Google Scholar 

  54. Zhou J, Kang N, Cui L, Ba D, He W (2012) Anti-γδ TCR antibody-expanded γδ T cells: a better choice for the adoptive immunotherapy of lymphoid malignancies. Cell Mol Immunol 9(1):34–44

    Article  PubMed  CAS  Google Scholar 

  55. Dokouhaki P, Han M, Joe B, Li M, Johnston MR, Tsao MS et al (2010) Adoptive immunotherapy of cancer using ex vivo expanded human gammadelta T cells: a new approach. Cancer Lett 297(1):126–136

    Article  PubMed  CAS  Google Scholar 

  56. Kang N, Zhou J, Zhang T, Wang L, Lu F, Cui Y et al (2009) Adoptive immunotherapy of lung cancer with immobilized anti-TCRgammadelta antibody-expanded human gammadelta T-cells in peripheral blood. Cancer Biol Ther 8(16):1540–1549

    Article  PubMed  CAS  Google Scholar 

  57. Ferrarini M, Heltai S, Pupa SM, Mernard S, Zocchi R (1996) Killing of laminin receptor-positive human lung cancers by tumor infiltrating lymphocytes bearing gammadelta(+) t-cell receptors. J Natl Cancer Inst 88(7):436–441

    Article  PubMed  CAS  Google Scholar 

  58. Kabelitz D, Wesch D, He W (2007) Perspectives of gammadelta T cells in tumor immunology. Cancer Res 67(1):5–8

    Article  PubMed  CAS  Google Scholar 

  59. Kunzmann V, Wilhelm M (2005) Anti-lymphoma effect of gammadelta T cells. Leuk Lymphoma 46(5):671–680

    Article  PubMed  CAS  Google Scholar 

  60. Dieli F, Caccamo N, Meraviglia S (2008) Advances in immunotherapy of castration-resistant prostate cancer: bisphosphonates, phosphoantigens and more. Curr Opin Investig Drugs 9(10):1089–1094

    PubMed  CAS  Google Scholar 

  61. Liu Z, Guo BL, Gehrs BC, Nan L, Lopez RD (2005) Ex vivo expanded human Vgamma9Vdelta2+ gammadelta-T cells mediate innate antitumor activity against human prostate cancer cells in vitro. J Urol 173(5):1552–1556

    Article  PubMed  CAS  Google Scholar 

  62. Saito A, Narita M, Yokoyama A, Watanabe N, Tochiki N, Satoh N et al (2007) Enhancement of anti-tumor cytotoxicity of expanded gammadelta T Cells by stimulation with monocyte-derived dendritic cells. J Clin Exp Hematop 47(2):61–72

    Article  PubMed  Google Scholar 

  63. Kobayashi H, Tanaka Y, Yagi J, Osaka Y, Nakazawa H, Uchiyama T et al (2007) Safety profile and anti-tumor effects of adoptive immunotherapy using gamma-delta T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunol Immunother 56(4):469–476

    Article  PubMed  CAS  Google Scholar 

  64. Bennouna J, Bompas E, Neidhardt EM, Rolland F, Philip I, Galea C et al (2008) Phase-I study of Innacell gammadelta, an autologous cell-therapy product highly enriched in gamma9delta2 T lymphocytes, in combination with IL-2, in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother 57(11):1599–1609

    Article  PubMed  CAS  Google Scholar 

  65. Kobayashi H, Tanaka Y, Shimmura H, Minato N, Tanabe K (2010) Complete remission of lung metastasis following adoptive immunotherapy using activated autologous gammadelta T-cells in a patient with renal cell carcinoma. Anticancer Res 30(2):575–579

    PubMed  CAS  Google Scholar 

  66. Dieli F, Gebbia N, Poccia F, Caccamo N, Montesano C, Fulfaro F et al (2003) Induction of gammadelta T-lymphocyte effector functions by bisphosphonate zoledronic acid in cancer patients in vivo. Blood 102(6):2310–2311

    Article  PubMed  CAS  Google Scholar 

  67. Girlanda S, Fortis C, Belloni D, Ferrero E, Ticozzi P, Sciorati C et al (2005) MICA expressed by multiple myeloma and monoclonal gammopathy of undetermined significance plasma cells Costimulates pamidronate-activated gammadelta lymphocytes. Cancer Res 65(16):7502–7508

    Article  PubMed  CAS  Google Scholar 

  68. Mariani S, Muraro M, Pantaleoni F, Fiore F, Nuschak B, Peola S et al (2005) Effector gammadelta T cells and tumor cells as immune targets of zoledronic acid in multiple myeloma. Leukemia 19(4):664–670

    PubMed  CAS  Google Scholar 

  69. Marten A, Lilienfeld-Toal M, Buchler MW, Schmidt J (2007) Zoledronic acid has direct antiproliferative and antimetastatic effect on pancreatic carcinoma cells and acts as an antigen for delta2 gamma/delta T cells. J Immunother 30(4):370–377

    Article  PubMed  Google Scholar 

  70. Dieli F, Vermijlen D, Fulfaro F, Caccamo N, Meraviglia S, Cicero G et al (2007) Targeting human {gamma} delta} T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Res 67(15):7450–7457

    Article  PubMed  CAS  Google Scholar 

  71. Meraviglia S, Eberl M, Vermijlen D, Todaro M, Buccheri S, Cicero G et al (2010) In vivo manipulation of Vgamma9Vdelta2 T cells with zoledronate and low-dose interleukin-2 for immunotherapy of advanced breast cancer patients. Clin Exp Immunol 161(2):290–297

    PubMed  CAS  Google Scholar 

  72. Gomes AQ, Martins DS, Silva-Santos B (2010) Targeting gammadelta T lymphocytes for cancer immunotherapy: from novel mechanistic insight to clinical application. Cancer Res 70(24):10024–10027

    Article  PubMed  CAS  Google Scholar 

  73. Kakimi K, Nakajima J, Wada H (2009) Active specific immunotherapy and cell-transfer therapy for the treatment of non-small cell lung cancer. Lung Cancer 65(1):1–8

    Article  PubMed  Google Scholar 

  74. Kikuchi E, Yamazaki K, Torigoe T, Cho Y, Miyamoto M, Oizumi S et al (2007) HLA class I antigen expression is associated with a favorable prognosis in early stage non-small cell lung cancer. Cancer Sci 98(9):1424–1430

    Article  PubMed  CAS  Google Scholar 

  75. Zocchi MR, Ferrarini M, Rugarli C (1990) Selective lysis of the autologous tumor by delta TCS1+ gamma/delta+ tumor-infiltrating lymphocytes from human lung carcinomas. Eur J Immunol 20(12):2685–2689

    Article  PubMed  CAS  Google Scholar 

  76. Nakajima J, Murakawa T, Fukami T, Goto S, Kaneko T, Yoshida Y et al (2010) A phase I study of adoptive immunotherapy for recurrent non-small-cell lung cancer patients with autologous gammadelta T cells. Eur J Cardiothorac Surg 37(5):1191–1197

    Article  PubMed  Google Scholar 

  77. Sakamoto M, Nakajima J, Murakawa T, Fukami T, Yoshida Y, Murayama T et al (2011) Adoptive immunotherapy for advanced non-small cell lung cancer using zoledronate-expanded gammadeltaTcells: a phase I clinical study. J Immunother 34(2):202–211

    Article  PubMed  CAS  Google Scholar 

  78. Hannani D, Ma Y, Déchanet-Merville J, Kroemer G, Zitvogel L (2012) Harnessing γδ T cells in anticancer immunotherapy. Trends Immunol 33(5):199–206

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

Authors did not have any conflict of interest in the redaction of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Marquez-Medina.

Additional information

*Supported by an unrestricted educational grant from MSD Oncology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marquez-Medina, D., Salla-Fortuny, J. & Salud-Salvia, A. Role of gamma-delta T-cells in cancer. Another opening door to immunotherapy. Clin Transl Oncol 14, 891–895 (2012). https://doi.org/10.1007/s12094-012-0935-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-012-0935-7

Keywords

Navigation