Skip to main content

Advertisement

Log in

Sugarcane Genetic Controls Involved in the Association with Beneficial Endophytic Nitrogen Fixing Bacteria

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Sugarcane is an economically important culture in Brazil, being the world most important source of sugar and ethanol production. Brazilian sugarcane culture is able to obtain large and significant contributions of nitrogen from plant-associated Biological Nitrogen Fixation (BNF), reducing the use of nitrogen fertilizers and leading to an increase in energy balance of the culture. Different populations of endophytic N2-fixing bacteria associated with sugarcane were identified. Besides BNF, these bacteria exhibit growth promoting traits by mechanisms involving nutrient solubilization, plant hormone production and pathogens antagonistic activity. BNF contribution efficiency to sugarcane is controlled by plant and bacteria genotypes as well as environmental conditions. Here, there will be reviewed the advances made in studies on molecular, cellular and physiological mechanisms by which sugarcane controls establishment and efficiency of endophytic association. Transcriptome profile analysis indentified several differentially expressed sugarcane genes during early stages of the association. Regulatory networks involved in various plant processes such as plant-microorganism recognition, defense, plant hormone signaling, plant growth and nitrogen metabolism were reported to be responsive to endophytic diazotrophic bacteria colonization. The data indicate that sugarcane actively participates in the association with these bacteria. Comprehension of how various sugarcane regulatory mechanisms are coordinated and connected to genotype and environmental signals, in order to control the establishment of a beneficial and endophytic type of association is still a big challenge. Nevertheless, the knowledge being accumulated may guide studies to improve plant association with endophytic diazotrophic bacteria and, possibly, to extend it to other crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BNF:

biological nitrogen fixation

PGPB:

plant growth promoting bacteria

PGP:

plant growth promotion

SUCEST:

sugarcane expressed sequence tags

RLK:

receptor like kinase

LRR-RLK:

leucine repeat rich receptor like kinase

NBS-LRR:

nucleotide binding site leucine repeat rich protein

SAR:

systemic acquired resistance

SC:

sugarcane, Saccharum sp.

SCER:

sugarcane ethylene receptor

SCERF:

sugarcane ethylene response factor

scGS:

gluthamine synthetase

References

  • Afzal AJ, Wood AJ, Lightfoot DA (2008) Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Mol Plant Microbe Interact 5:507–517

    Article  Google Scholar 

  • Arencibia A, Silva FV, Estevez Y et al (2006) Gluconoacetobacter diazotrophicus elicitate a sugarcane defense response against a pathogenic bacteria Xanthomonas albilineans. Plant Sign Behav 1:265–273

    Article  Google Scholar 

  • Baldani VLD, Baldani JI, Döbereiner JI (1983) Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat. Can J Microbiol 29:924–929

    Article  Google Scholar 

  • Baldani VLD, Alvarez MA de B, Baldani JI, Döbereiner J (1986) Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum. Plant Soil 90:35–46

    Article  Google Scholar 

  • Baldani VLD, Baldani JI, Döbereiner J (1987) Inoculation of fied grown wheat (Triticum aestivum) with Azospirillum spp. Brazil Biol Fertil Soils 4:37–40

    Google Scholar 

  • Baldani JI, Caruso L, Baldani VLD et al (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29:911–922

    Article  CAS  Google Scholar 

  • Barnett MJ, Toman CJ, Fisher RF, Long SR (2004) A dual-genome symbiosis chip for coordinate study of signal exchange and development in a prokaryote–host interaction. Proc Natl Acad Sci USA 101:16636–16641

    Article  PubMed  CAS  Google Scholar 

  • Barsch A, Carvalho HG, Cullimore JV, Niehaus K (2006) GC–MS based metabolite profiling implies three interdependent ways of ammonium assimilation in Medicago truncatula root nodules. J Biotechnol 127:79–83

    Article  PubMed  CAS  Google Scholar 

  • Bastián F, Cohen A, Piccoli P et al (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically defined culture media. Plant Growth Regul 24:7–11

    Article  Google Scholar 

  • Bellone CH, Bellone SDVC, Pedraza RO et al (1997) Cell colonization and infection thread formation in sugar cane roots by Acetobacter diazotrophicus. Soil Biol Biochem 29:965–967

    Article  CAS  Google Scholar 

  • Bertalan M, Albano R, de Pádua V et al (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics 10:450–467

    Article  PubMed  Google Scholar 

  • Blanco Y, Blanch M, Piñón D et al (2005) Antagonism of Gluconacetobacter diazotrophicus (a sugarcane endosymbiont) against Xanthomonas albilineans (pathogen) studied in alginate-immobilized sugarcane stalk tissues. J Biosci Bioeng 99:366–371

    Article  PubMed  CAS  Google Scholar 

  • Boddey RM, de Oliveira OC, Urquiaga S et al (1995) Biological nitrogen fixation associated with sugar cane and rice: Contributions and prospects for improvement. Plant Soil 174:195–209

    Article  CAS  Google Scholar 

  • Boddey RM, Urquiaga S, Alves BJR, Reis V (2003) Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252:139–149

    Article  CAS  Google Scholar 

  • Caballero-Mellado J, Fuentes-Ramirez LE, Reis VM et al (1995) Genetic structure of Acetobacter diazotrophicus populations and identification of a new genetically distant group. Appl Environ Microbiol 61:3008–3013

    PubMed  CAS  Google Scholar 

  • Cavalcante JJ, Vargas C, Nogueira EM (2007) Members of the ethylene signaling pathway are regulated in sugarcane during the association with nitrogen-fixing endophytic bacteria. J Exp Bot 58:673–686

    Article  PubMed  CAS  Google Scholar 

  • Ciardi JA, Tieman DM, Lund ST et al (2000) Response to Xanthomonas campestris pv. vesicatoria in tomato involves regulation of ethylene receptor gene expression. Plant Physiol 123:81–92

    Article  PubMed  CAS  Google Scholar 

  • Clark D, Durner J, Navarre DA, Klessig DF (2000) Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Mol Plant Microbe Interact 13:1380–1384

    Article  PubMed  CAS  Google Scholar 

  • Cocking EC, Stone PJ, Davey MR (2006) Intracellular colonization of roots of Arabidopsis and crop plants by Gluconacetobacter diazotrophicus. Vitro Cell Dev Biol Plany 42:74–82

    Article  Google Scholar 

  • Cojho EH, Reis VM, Schenberg ACG et al (1993) Interactions of Acetobacter diazotrophicus with an amylolytic yeast in nitrogen-free batch culture. FEMS Microbiol Lett 106:341–346

    CAS  Google Scholar 

  • Colebatch G, Desbrosses G, Ott T et al (2004) Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus. Plant J 39:487–512

    Article  PubMed  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Article  PubMed  CAS  Google Scholar 

  • Denison RF, Kiers ET (2004) Lifestyle alternatives for rhizobia: mutualism, parasitism, and forgoing symbiosis. FEMS Microbiol Lett 237:187–193

    Article  PubMed  CAS  Google Scholar 

  • Dilworth MJ (1966) Acetylene reduction by nitrogen-fixing preparations from Clostridium pasteurianum. Biochim Biophys Acta 127:285–294

    PubMed  CAS  Google Scholar 

  • Dong Z, Canny MJ, McCully ME, Roboredo MR, Cabadilla CF, Ortega E, Rodes R (1994) A nitrogen fixing endophyte of sugarcane stems. (A new role for the apoplast). Plant Physiol 105:1139–1147

    PubMed  CAS  Google Scholar 

  • Dong A, Heydrich M, Bernard K, McCully ME (1995) Further evidence that N2 fixing endophytic bacterium from the intercellular spaces of sugarcane stems in Acetobacter diazotrophicus. Appl Environ Microbiol 61:1843–1846

    PubMed  CAS  Google Scholar 

  • Dong Z, Mccully ME, Canny MJ (1997) Does Acetobacter diazotrophicus live and move in the xylem of sugarcane stems? Anatomical and physiological data. An Bot 80:147–158

    Article  Google Scholar 

  • dos Santos MF, de Pádua VLM, Nogueira EM et al (2010) Proteome of Gluconacetobacter diazotrophicus co-cultivated with sugarcane plantlets. J Proteomics 73:917–931

    Article  PubMed  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci USA 95:10328–10333

    Article  PubMed  CAS  Google Scholar 

  • Egener T, Hurek T, Reinhold-Hurek B (1998) Use of green fluorescent protein to detect expression of nif genes of Azoarcus sp. BH72, a grass-associated diazotroph, on rice roots. Mol Plant Microbe Interact 11:71–75

    Article  PubMed  CAS  Google Scholar 

  • Fuentes-Ramirez LE, Jiminez-Salgado T, Abarca-Ocampo IR, Caballero Mellado J (1993) Acetobacter diazotrophicus, an indolacetic acid-producing bacterium isolated from sugarcane cultivars in Mexico. Plant Soil 154:145–150

    Article  CAS  Google Scholar 

  • Fuentes-Ramirez LE, Caballero-Mellado J, Sepúlveda J, Martínez-Romero E (1999) Colonization of sugarcane by Gluconacetobacter diazotrophicus is inhibited by high N fertilization. FEMS Microbiol Ecol 29:117–128

    CAS  Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B et al (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756

    Article  PubMed  CAS  Google Scholar 

  • Hendre RR, Iyor RS, Kotwalm M et al (1983) Rapid multiplication of sugar cane by tissue culture. Sugar Cane 1:5–8

    Google Scholar 

  • Iniguez AL, Dong Y, Carter HD (2005) Regulation of enteric endophytic bacterial colonization by plant defences. Mol Plant Microbe Interact 18:169–178

    Article  PubMed  CAS  Google Scholar 

  • James EK, Olivares FL (1998) Infection and colonization of sugarcane and other graminaceous plants by endophytic diazotrophs. Crit Rev Plant Sci 17:77–119

    Article  Google Scholar 

  • James EK, Reis VM, Olivares FL et al (1994) Infection of sugarcane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J Exp Bot 45:757–766

    Article  CAS  Google Scholar 

  • James EK, Olivares FL, Oliveira ALM et al (2001) Further observations on the interaction between sugar cane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. J Exp Bot 52:747–760

    PubMed  CAS  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331

    Article  PubMed  CAS  Google Scholar 

  • Lambais MR (2000) Regulation of plant DR genes in arbuscular mycorrhizae. In: Podila GK, Douds DD Jr (eds) Current advances in micorrhizae research. APS, St Paul

    Google Scholar 

  • Lambais MR (2001) In silico differential display of defense-related expressed sequence tags from sugarcane tissues infected with diazotrophic endophyes. Gen Mol Biol 24:103–111

    Article  CAS  Google Scholar 

  • Léon-Kloosterziel KM, Verhagen BW, Keurentjes JJ (2005) Colonization of the Arabidopsis rhizosphere by fluorescent Pseudomonas spp. activates a root-specific, ethylene-responsive PR-5 gene in the vascular bundle. Plant Mol Biol 57:731–748

    Article  PubMed  Google Scholar 

  • Lery LMS, Coelho A, von Kruger VMA et al (2008) Protein expression profile of Gluconacetobacter diazotrophicus PAL5, a sugarcane endophytic plant growth-promoting bacterium. Proteomics 8:1631–1644

    Article  PubMed  CAS  Google Scholar 

  • Lima E, Boddey RM, Döbereiner J (1987) Quantification of biological nitrogen fixation associated with sugarcane using a 15N aided nitrogen balance. Soil Biol Biochem 19:165–170

    Article  CAS  Google Scholar 

  • Long SR (1996) Rhizobium symbiosis: nod factors in perspective. Plant Cell 8:1885–1898

    Article  PubMed  CAS  Google Scholar 

  • Maheshkumar KS, Krishnaraj PU, Alagawadi AR (1999) Mineral phosphate solubilizing activity of Acetobacter diazotrophicus: a bacterium associated with sugarcane. Curr Sci 76:874–875

    Google Scholar 

  • Márquez AJ, Betti M, García-Calderón M et al (2005) Nitrate assimilation in Lotus japonicus. J Exp Bot 56:1741–1749

    Article  PubMed  Google Scholar 

  • Muthukumarasamy R, Revathi G, Vadivelu M (2000) Antagonistic potential of N2 fixing Acetobacter diazotrophicus against Colletotrichum falcatum Went, a causal organism of red-rot of sugarcane. Curr Sci 78:1063–1065

    Google Scholar 

  • Nogueira EM, Vinagre F, Masuda HP et al (2001) Expression of sugarcane genes induced by inoculation with Gluconacetobacter diazotrophicus and Herbaspirillum rubrisubalbicans. Gen Mol Biol 24:199–206

    Article  CAS  Google Scholar 

  • Nogueira EM, Olivares FL, Cavalcante JJ et al (2005) Characterization of gluthamine synthetase genes in sugarcane genotypes with different rates of biological nitrogen fixation. Plant Sci 169:819–832

    Article  Google Scholar 

  • Nukui N, Ezura H, Minamisawa K (2004) Transgenic Lotus japonicus with an ethylene receptor gene Cm-ERS1/H70A enhances formation of infection threads and nodule primordia. Plant Cell Physiol 45:427–435

    Article  PubMed  CAS  Google Scholar 

  • Olivares FL, James EK, Baldani JI, Döbereiner J (1997) Infection of mottled stripe disease-susceptible and resistant sugar cane varieties by the endophytic diazotroph Herbaspirillum. New Phytol 135:723–727

    Article  Google Scholar 

  • Oliveira ALM, Urquiaga S, Döbereiner J, Baldani JI (2002) The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242:205–215

    Article  CAS  Google Scholar 

  • Oliveira ALM, Canuto EL, Reis VM, Baldani JI (2003) Response of micropropagated sugarcane varieties to inoculation with endophytic diazotrophic bacteria. Braz J Microbiol 34:59–61

    Article  Google Scholar 

  • Penmetsa RV, Cook DR (1997) A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275:527–530

    Article  PubMed  CAS  Google Scholar 

  • Reis Júnior FB, Silva LG, Reis VM, Döbereiner J (2000) Ocorrência de bactérias diazotróficas em diferentes genótipos de cana-de-açúcar. Pesq Agropec Bras 35:985–994

    Article  Google Scholar 

  • Reis VM, Döbereiner J (1998) Effect of high sugar concentrtaion on nitrogenase activity of Acetobacter diazotrophicus. Arch Microbiol 171:13–18

    Article  PubMed  CAS  Google Scholar 

  • Reis VM, Olivares FL, Döbereiner J (1994) Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World J Microbiol Biotechnol 10:101–104

    Article  Google Scholar 

  • Rocha FR, Papini-Terzi FS, Nishiyama Júnior MY et al (2007) Signal transduction-related responses to phytohormones and environmental inputs in sugarcane. BMC Genomics 8:71–78

    Article  PubMed  Google Scholar 

  • Ruschel AP (1981) Associative N2-fixation by sugar cane. In: Vose PB, Ruschel AP (eds) Associative N2-Fixation, vol II. CRC, Boca Raton

    Google Scholar 

  • Saravanan VS, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794–1798

    Article  PubMed  CAS  Google Scholar 

  • Saravanan VS, Madhaiyan M, Osborne J et al (2008) Ecological occurrence of Gluconacetobacter diazotrophicus and nitrogen-fixing Acetobacteraceae members: their possible role in plant growth promotion. Microbiol Ecol 55:130–140

    Article  CAS  Google Scholar 

  • Schöllorn R, Burris RH (1967) Acethylene as a competitive inhibitor of N2 fixation. Proc Natl Acad Sci USA 58:213–2136

    Article  Google Scholar 

  • Sevilla M, Burris RH, Gunapla N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and nif- mutant strains. Mol Plant Microbe Interact 14:358–366

    Article  PubMed  CAS  Google Scholar 

  • Sikorski MM, Biesiadka J, Kasperska AE et al (1999) Expression of genes encoding PR10 class pathogenesis-related proteins is inhibited in yellow lupine root nodules. Plant Sci 149:125–137

    Article  CAS  Google Scholar 

  • Souza GM, Simoes ACQ, Oliveira KC et al (2001) The sugarcane signal transduction (SUCAST) catalogue: prospecting signal transduction in sugarcane. Gen Mol Biol 24:25–34

    Article  CAS  Google Scholar 

  • Tör M, Lotze MT, Holton N (2009) Receptor-mediated signalling in plants: molecular patterns and programmes. J Exp Bot 60:3645–3654

    Article  PubMed  Google Scholar 

  • Urquiaga S, Cruz KHS, Boddey RM (1992) Contribution of nitrogen fixation to sugar cane: Nitrogen-15 and nitrogen-balance estimates. Soil Sci Soc Am J 56:105–114

    Article  Google Scholar 

  • Vargas C, de Pádua VLM, Nogueira EM et al (2003) Signaling pathways mediating the association between sugarcane and endophytic diazotrophic bacteria: a genomic approach. Symbiosis 35:159–180

    CAS  Google Scholar 

  • Vettore AL, da Silva FR, Kemper EL et al (2003) Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane. Gen Res 13:2725–2735

    Article  Google Scholar 

  • Vinagre F, Vargas C, Schwarcz KD et al (2006) SHR5: a novel plant receptor kinase involved in plant-N2 fixing endophytic bacteria association. J Exp Bot 57:559–569

    Article  PubMed  CAS  Google Scholar 

  • Wanderley-Nogueira AC, Soares-Cavalcanti NM, Morais DAL et al (2007) Abundance and diversity of resistance genesin the sugarcane transcriptome revealed by in silico analysis. Gen Mol Res 6:866–889

    CAS  Google Scholar 

  • Yahyaoui FE, Küster H, Amor BB et al (2004) Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program. Plant Physiol 136:3159–3176

    Article  PubMed  Google Scholar 

  • Yoneyama T, Muraoka T, Kim TH et al (1997) The natural 15N abundance of sugarcane and neighbouring plants in Brazil, the Philippines and Miyako (Japan). Plant Soil 189:239–244

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank INCT (Instituto Nacional de Ciência de Tecnologia) in Biological Nitrogen Fixation, FAPERJ (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana S. Hemerly.

Additional information

Communicated by: Paulo Arruda

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Carvalho, T.L.G., Ferreira, P.C.G. & Hemerly, A.S. Sugarcane Genetic Controls Involved in the Association with Beneficial Endophytic Nitrogen Fixing Bacteria. Tropical Plant Biol. 4, 31–41 (2011). https://doi.org/10.1007/s12042-011-9069-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-011-9069-2

Keywords

Navigation