Skip to main content

Advertisement

Log in

Introduction to Deep Sequencing and Its Application to Drug Addiction Research with a Focus on Rare Variants

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Through linkage analysis, candidate gene approach, and genome-wide association studies (GWAS), many genetic susceptibility factors for substance dependence have been discovered such as the alcohol dehydrogenase gene (ALDH2) for alcohol dependence (AD) and nicotinic acetylcholine receptor (nAChR) subunit variants on chromosomes 8 and 15 for nicotine dependence (ND). However, these confirmed genetic factors contribute only a small portion of the heritability responsible for each addiction. Among many potential factors, rare variants in those identified and unidentified susceptibility genes are supposed to contribute greatly to the missing heritability. Several studies focusing on rare variants have been conducted by taking advantage of next-generation sequencing technologies, which revealed that some rare variants of nAChR subunits are associated with ND in both genetic and functional studies. However, these studies investigated variants for only a small number of genes and need to be expanded to broad regions/genes in a larger population. This review presents an update on recently developed methods for rare-variant identification and association analysis and on studies focused on rare-variant discovery and function related to addictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. WHO (2008) Report on the global tobacco epidemic, 2008: the MPOWER package. World Health Organization, Geneva

    Google Scholar 

  2. Mokdad AH, Marks JS, Stroup DF, Gerberding JL (2004) Actual causes of death in the United States, 2000. JAMA 291:1238–1245

    Article  PubMed  Google Scholar 

  3. Centers for Disease, Control and Prevention (2008) Smoking-attributable mortality, years of potential life lost, and productivity losses—United States, 2000–2004. MMWR 57:1226–1228

    Google Scholar 

  4. Rhee SH, Hewitt JK, Young SE, Corley RP, Crowley TJ, Stallings MC (2003) Genetic and environmental influences on substance initiation, use, and problem use in adolescents. Arch Gen Psychiatry 60:1256–1264

    Article  PubMed  Google Scholar 

  5. Palmer RHC, Young SE, Hopfer CJ, Corley RP, Stallings MC, Crowley TJ, Hewitt JK (2009) Developmental epidemiology of drug use and abuse in adolescence and young adulthood: evidence of generalized risk. Drug Alcohol Depend 102:78–87

    Article  PubMed Central  PubMed  Google Scholar 

  6. Li MD, Burmeister M (2009) New insights into the genetics of addiction. Nat Rev Genet 10:225–231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Bierut LJ, Dinwiddie SH, Begleiter H, Crowe RR, Hesselbrock V, Nurnberger JI Jr, Porjesz B, Schuckit MA, Reich T (1998) Familial transmission of substance dependence: alcohol, marijuana, cocaine, and habitual smoking: a report from the Collaborative Study on the Genetics of Alcoholism. Arch Gen Psychiatry 55:982–988

    Article  CAS  PubMed  Google Scholar 

  8. Agrawal A, Lynskey MT (2008) Are there genetic influences on addiction: evidence from family, adoption and twin studies. Addiction 103:1069–1081

    Article  PubMed  Google Scholar 

  9. Li MD, Cheng R, Ma JZ, Swan GE (2003) A meta-analysis of estimated genetic and environmental effects on smoking behavior in male and female adult twins. Addiction 98:23–31

    Article  PubMed  Google Scholar 

  10. Tsuang MT, Bar JL, Harley RM, Lyons MJ (2001) The Harvard twin study of substance abuse: what we have learned. Harv Rev Psychiatry 9:267–279

    Article  CAS  PubMed  Google Scholar 

  11. Agrawal A, Lynskey MT, Hinrichs A, Grucza R, Saccone SF, Krueger R, Neuman R, Howells W, Fisher S, Fox L et al (2011) A genome-wide association study of DSM-IV cannabis dependence. Addict Biol 16:514–518

    Article  PubMed Central  PubMed  Google Scholar 

  12. Long JC, Knowler WC, Hanson RL, Robin RW, Urbanek M, Moore E, Bennett PH, Goldman D (1998) Evidence for genetic linkage to alcohol dependence on chromosomes 4 and 11 from an autosome-wide scan in an American Indian population. Am J Med Genet 81:216–221

    Article  CAS  PubMed  Google Scholar 

  13. Reich T, Edenberg HJ, Goate A, Williams JT, Rice JP, Van Eerdewegh P, Foroud T, Hesselbrock V, Schuckit MA, Bucholz K et al (1998) Genome-wide search for genes affecting the risk for alcohol dependence. Am J Med Genet 81:207–215

    Article  CAS  PubMed  Google Scholar 

  14. Foroud T, Edenberg HJ, Goate A, Rice J, Flury L, Koller DL, Bierut LJ, Conneally PM, Nurnberger JI, Bucholz KK et al (2000) Alcoholism susceptibility loci: confirmation studies in a replicate sample and further mapping. Alcohol Clin Exp Res 24:933–945

    Article  CAS  PubMed  Google Scholar 

  15. Cui WY, Seneviratne C, Gu J, Li MD (2012) Genetics of GABAergic signaling in nicotine and alcohol dependence. Hum Genet 131:843–855

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Gelernter J, Kranzler HR (2009) Genetics of alcohol dependence. Hum Genet 126:91–99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Goldman D, Oroszi G, Ducci F (2005) The genetics of addictions: uncovering the genes. Nat Rev Genet 6:521–532

    Article  CAS  PubMed  Google Scholar 

  18. Treutlein J, Cichon S, Ridinger M, Wodarz N, Soyka M, Zill P, Maier W, Moessner R, Gaebel W, Dahmen N et al (2009) Genome-wide association study of alcohol dependence. Arch Gen Psychiatry 66:773–784

    Article  CAS  PubMed  Google Scholar 

  19. Li D, Zhao H, Gelernter J (2011) Strong association of the alcohol dehydrogenase 1B gene (ADH1B) with alcohol dependence and alcohol-induced medical diseases. Biol Psychiatry 70:504–512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Guo H, Zhang G, Mai R (2012) Alcohol dehydrogenase-1B Arg47His polymorphism and upper aerodigestive tract cancer risk: a meta-analysis including 24,252 subjects. Alcohol Clin Exp Res 36:272–278

    Article  CAS  PubMed  Google Scholar 

  21. Li D, Zhao H, Gelernter J (2012) Further clarification of the contribution of the ADH1C gene to vulnerability of alcoholism and selected liver diseases. Hum Genet 131:1361–1374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Li D, Zhao H, Gelernter J (2012) Strong protective effect of the aldehyde dehydrogenase gene (ALDH2) 504lys (*2) allele against alcoholism and alcohol-induced medical diseases in Asians. Hum Genet 131:725–737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Li MD (2008) Identifying susceptibility loci for nicotine dependence: 2008 update based on recent genome-wide linkage analyses. Hum Genet 123:119–131

    Article  CAS  PubMed  Google Scholar 

  24. Li MD, Ma JZ, Payne TJ, Lou XY, Zhang D, Dupont RT, Elston RC (2008) Genome-wide linkage scan for nicotine dependence in European Americans and its converging results with African Americans in the mid-South tobacco family sample. Mol Psychiatry 13:407–416

    Article  CAS  PubMed  Google Scholar 

  25. Gelernter J, Liu X, Hesselbrock V, Page GP, Goddard A, Zhang H (2004) Results of a genomewide linkage scan: support for chromosomes 9 and 11 loci increasing risk for cigarette smoking. Am J Med Genet B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Gen 128B:94–101

    Article  Google Scholar 

  26. Morley KI, Medland SE, Ferreira MA, Lynskey MT, Montgomery GW, Heath AC, Madden PA, Martin NG (2006) A possible smoking susceptibility locus on chromosome 11p12: evidence from sex-limitation linkage analyses in a sample of Australian twin families. Behav Genet 36:87–99

    Article  PubMed  Google Scholar 

  27. Vink JM, Posthuma D, Neale MC, Eline Slagboom P, Boomsma DI (2006) Genome-wide linkage scan to identify loci for age at first cigarette in Dutch sibling pairs. Behav Benet 36:100–111

    Article  Google Scholar 

  28. Saccone SF, Pergadia ML, Loukola A, Broms U, Montgomery GW, Wang JC, Agrawal A, Dick DM, Heath AC, Todorov AA et al (2007) Genetic linkage to chromosome 22q12 for a heavy-smoking quantitative trait in two independent samples. Am J Hum Genet 80:856–866

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Loukola A, Broms U, Maunu H, Widen E, Heikkila K, Siivola M, Salo A, Pergadia ML, Nyman E, Sammalisto S et al (2008) Linkage of nicotine dependence and smoking behavior on 10q, 7q and 11p in twins with homogeneous genetic background. Pharmacogenomics J 8:209–219

    Article  CAS  PubMed  Google Scholar 

  30. Morabia A, Cayanis E, Costanza MC, Ross BM, Bernstein MS, Flaherty MS, Alvin GB, Das K, Morris MA, Penchaszadeh GK et al (2003) Association between lipoprotein lipase (LPL) gene and blood lipids: a common variant for a common trait? Genet Epidemiol 24:309–321

    Article  PubMed  Google Scholar 

  31. Wang D, Ma JZ, Li MD (2005) Mapping and verification of susceptibility loci for smoking quantity using permutation linkage analysis. Pharmacogenomics J 5:166–172

    Article  PubMed  CAS  Google Scholar 

  32. Li MD, Payne TJ, Ma JZ, Lou XY, Zhang D, Dupont RT, Crews KM, Somes G, Williams NJ, Elston RC (2006) A genomewide search finds major susceptibility Loci for nicotine dependence on chromosome 10 in African Americans. Am J Hum Genet 79:745–751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Swan GE, Hops H, Wilhelmsen KC, Lessov-Schlaggar CN, Cheng LS, Hudmon KS, Amos CI, Feiler HS, Ring HZ, Andrews JA et al (2006) A genome-wide screen for nicotine dependence susceptibility loci. Am J Med Genet B Neuropsychiatr Genet 141:354–360

    Article  Google Scholar 

  34. Gelernter J, Panhuysen C, Weiss R, Brady K, Poling J, Krauthammer M, Farrer L, Kranzler HR (2007) Genomewide linkage scan for nicotine dependence: identification of a chromosome 5 risk locus. Biol Psychiatry 61:119–126

    Article  CAS  PubMed  Google Scholar 

  35. Li MD, Sun D, Lou XY, Beuten J, Payne TJ, Ma JZ (2007) Linkage and association studies in African- and Caucasian-American populations demonstrate that SHC3 is a novel susceptibility locus for nicotine dependence. Mol Psychiatry 12:462–473

    Article  CAS  PubMed  Google Scholar 

  36. Bierut LJ, Stitzel JA, Wang JC, Hinrichs AL, Grucza RA, Xuei X, Saccone NL, Saccone SF, Bertelsen S, Fox L et al (2008) Variants in nicotinic receptors and risk for nicotine dependence. Am J Psychiatry 165:1163–1171

    Article  PubMed Central  PubMed  Google Scholar 

  37. Li MD, Xu Q, Lou XY, Payne TJ, Niu T, Ma JZ (2010) Association and interaction analysis of variants in CHRNA5/CHRNA3/CHRNB4 gene cluster with nicotine dependence in African and European Americans. Am J Med Genet B Neuropsychiatr Genet 153B:745–756

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Li MD, Yoon D, Lee JY, Han BG, Niu T, Payne TJ, Ma JZ, Park T (2010) Associations of variants in CHRNA5/A3/B4 gene cluster with smoking behaviors in a Korean population. PLoS One 5:e12183

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Liu JZ, Tozzi F, Waterworth DM, Pillai SG, Muglia P, Middleton L, Berrettini W, Knouff CW, Yuan X, Waeber G et al (2010) Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat Genet 42:436–440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Saccone NL, Culverhouse RC, Schwantes-An TH, Cannon DS, Chen X, Cichon S, Giegling I, Han S, Han Y, Keskitalo-Vuokko K et al (2010) Multiple independent loci at chromosome 15q25.1 affect smoking quantity: a meta-analysis and comparison with lung cancer and COPD. PLoS Genet 6

  41. Thorgeirsson TE, Gudbjartsson DF, Surakka I, Vink JM, Amin N, Geller F, Sulem P, Rafnar T, Esko T, Walter S et al (2010) Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat Genet 42:448–453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Tobacco & Genetics Consortium (2010) Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet 42:441–447

    Article  CAS  Google Scholar 

  43. Truong T, Hung RJ, Amos CI, Wu X, Bickeboller H, Rosenberger A, Sauter W, Illig T, Wichmann HE, Risch A et al (2010) Replication of lung cancer susceptibility loci at chromosomes 15q25, 5p15, and 6p21: a pooled analysis from the International Lung Cancer Consortium. J Natl Cancer Inst 102:959–971

    Article  CAS  PubMed  Google Scholar 

  44. Saccone NL, Schwantes-An TH, Wang JC, Grucza RA, Breslau N, Hatsukami D, Johnson EO, Rice JP, Goate AM, Bierut LJ (2010) Multiple cholinergic nicotinic receptor genes affect nicotine dependence risk in African and European Americans. Genes Brain Behav 9:741–750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Cui WY, Wang S, Yang J, Yi SG, Yoon D, Kim YJ, Payne TJ, Ma JZ, Park T, Li MD (2013) Significant association of CHRNB3 variants with nicotine dependence in multiple ethnic populations. Mol Psychiatry. doi:10.1038/mp.2012.190

  46. Gelernter J, Yu Y, Weiss R, Brady K, Panhuysen C, Yang BZ, Kranzler HR, Farrer L (2006) Haplotype spanning TTC12 and ANKK1, flanked by the DRD2 and NCAM1 loci, is strongly associated to nicotine dependence in two distinct American populations. Hum Mol Genet 15:3498–3507

    Article  CAS  PubMed  Google Scholar 

  47. Huang W, Payne TJ, Ma JZ, Beuten J, Dupont RT, Inohara N, Li MD (2009) Significant association of ANKK1 and detection of a functional polymorphism with nicotine dependence in an African-American sample. Neuropsychopharmacology 34:319–330

    Article  CAS  PubMed  Google Scholar 

  48. Saccone NL, Saccone SF, Hinrichs AL, Stitzel JA, Duan W, Pergadia ML, Agrawal A, Breslau N, Grucza RA, Hatsukami D et al (2009) Multiple distinct risk loci for nicotine dependence identified by dense coverage of the complete family of nicotinic receptor subunit (CHRN) genes. Am J Med Genet B Neuropsychiatr Genet 150B:453–466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Bierut LJ, Madden PA, Breslau N, Johnson EO, Hatsukami D, Pomerleau OF, Swan GE, Rutter J, Bertelsen S, Fox L et al (2007) Novel genes identified in a high-density genome wide association study for nicotine dependence. Hum Mol Genet 16:24–35

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Nussbaum J, Xu Q, Payne TJ, Ma JZ, Huang W, Gelernter J, Li MD (2008) Significant association of the neurexin-1 gene (NRXN1) with nicotine dependence in European- and African-American smokers. Hum Mol Genet 17:1569–1577

    Article  CAS  PubMed  Google Scholar 

  51. TAG (2010) Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet 42:441–447

    Article  CAS  Google Scholar 

  52. Beuten J, Ma JZ, Payne TJ, Dupont RT, Quezada P, Huang W, Crews KM, Li MD (2005) Significant association of BDNF haplotypes in European-American male smokers but not in European-American female or African-American smokers. Am J Med Genet B Neuropsychiatr Genet 139:73–80

    Article  CAS  Google Scholar 

  53. Hopfer CJ, Lessem JM, Hartman CA, Stallings MC, Cherny SS, Corley RP, Hewitt JK, Krauter KS, Mikulich-Gilbertson SK, Rhee SH et al (2007) A genome-wide scan for loci influencing adolescent cannabis dependence symptoms: evidence for linkage on chromosomes 3 and 9. Drug Alcohol Depend 89:34–41

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Ehlers CL, Gilder DA, Gizer IR, Wilhelmsen KC (2009) Heritability and a genome-wide linkage analysis of a Type II/B cluster construct for cannabis dependence in an American Indian community. Addict Biol 14:338–348

    Article  PubMed Central  PubMed  Google Scholar 

  55. Gelernter J, Panhuysen C, Weiss R, Brady K, Hesselbrock V, Rounsaville B, Poling J, Wilcox M, Farrer L, Kranzler HR (2005) Genomewide linkage scan for cocaine dependence and related traits: significant linkages for a cocaine-related trait and cocaine-induced paranoia. Am J Med Genet B Neuropsychiatr Genet 136B:45–52

    Article  PubMed  Google Scholar 

  56. Gelernter J, Panhuysen C, Wilcox M, Hesselbrock V, Rounsaville B, Poling J, Weiss R, Sonne S, Zhao H, Farrer L et al (2006) Genomewide linkage scan for opioid dependence and related traits. Am J Hum Genet 78:759–769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Lachman HM, Fann CS, Bartzis M, Evgrafov OV, Rosenthal RN, Nunes EV, Miner C, Santana M, Gaffney J, Riddick A et al (2007) Genomewide suggestive linkage of opioid dependence to chromosome 14q. Hum Mol Genet 16:1327–1334

    Article  CAS  PubMed  Google Scholar 

  58. Levran O, Awolesi O, Linzy S, Adelson M, Kreek MJ (2011) Haplotype block structure of the genomic region of the mu opioid receptor gene. J Hum Genet 56:147–155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Levran O, Yuferov V, Kreek MJ (2012) The genetics of the opioid system and specific drug addictions. Hum Genet 131:823–842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Zhang H, Kranzler HR, Yang BZ, Luo X, Gelernter J (2008) The OPRD1 and OPRK1 loci in alcohol or drug dependence: OPRD1 variation modulates substance dependence risk. Mol Psychiatry 13:531–543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Bart G, Heilig M, LaForge KS, Pollak L, Leal SM, Ott J, Kreek MJ (2004) Substantial attributable risk related to a functional mu-opioid receptor gene polymorphism in association with heroin addiction in central Sweden. Mol Psychiatry 9:547–549

    Article  CAS  PubMed  Google Scholar 

  62. Tan EC, Tan CH, Karupathivan U, Yap EP (2003) Mu opioid receptor gene polymorphisms and heroin dependence in Asian populations. Neuroreport 14:569–572

    Article  CAS  PubMed  Google Scholar 

  63. Levran O, Londono D, O’Hara K, Nielsen DA, Peles E, Rotrosen J, Casadonte P, Linzy S, Randesi M, Ott J et al (2008) Genetic susceptibility to heroin addiction: a candidate gene association study. Genes Brain Behav 7:720–729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Nielsen DA, Ji F, Yuferov V, Ho A, He C, Ott J, Kreek MJ (2010) Genome-wide association study identifies genes that may contribute to risk for developing heroin addiction. Psychiatr Genet 20:207–214

    Article  PubMed  Google Scholar 

  65. Nishizawa D, Fukuda K, Kasai S, Hasegawa J, Aoki Y, Nishi A, Saita N, Koukita Y, Nagashima M, Katoh R et al (2012) Genome-wide association study identifies a potent locus associated with human opioid sensitivity. Mol Psychiatry. doi:10.1038/mp.2012.164

  66. Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447:433–440

    Article  CAS  PubMed  Google Scholar 

  67. Mackay TF, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10:565–577

    Article  CAS  PubMed  Google Scholar 

  68. Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe’er I, Dudbridge F, Holmans PA, Whittemore AS, Mowry BJ et al (2009) Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 460:753–757

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Visscher PM, Hill WG, Wray NR (2008) Heritability in the genomics era—concepts and misconceptions. Nat Rev Genet 9:255–266

    Article  CAS  PubMed  Google Scholar 

  70. Cirulli ET, Goldstein DB (2010) Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet 11:415–425

    Article  CAS  PubMed  Google Scholar 

  71. Feldman MW, Lewontin RC (1975) The heritability hang-up. Science 190:1163–1168

    Article  CAS  PubMed  Google Scholar 

  72. Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, Nadeau JH (2010) Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 11:446–450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Mackay TF (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339

    Article  CAS  PubMed  Google Scholar 

  74. Gibson G (2011) Rare and common variants: twenty arguments. Nat Rev Genet 13:135–145

    Article  CAS  Google Scholar 

  75. Lupski JR, Belmont JW, Boerwinkle E, Gibbs RA (2011) Clan genomics and the complex architecture of human disease. Cell 147:32–43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, Shaffer T, Wong M, Bhattacharjee A, Eichler EE et al (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461:272–276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073

    Article  PubMed  CAS  Google Scholar 

  78. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65

    Article  PubMed  CAS  Google Scholar 

  79. Altshuler DM, Gibbs RA, Peltonen L, Altshuler DM, Gibbs RA, Peltonen L, Dermitzakis E, Schaffner SF, Yu F, Peltonen L et al (2010) Integrating common and rare genetic variation in diverse human populations. Nature 467:52–58

    Article  CAS  PubMed  Google Scholar 

  80. Li Y, Sidore C, Kang HM, Boehnke M, Abecasis GR (2011) Low-coverage sequencing: implications for design of complex trait association studies. Genome Res 21:940–951

    Article  CAS  PubMed  Google Scholar 

  81. Flanigan KM, Gastier-Foster J, Pyatt R, Rosales XQ, Thrush DL, Kneile K, Mendell JR, Kelly B, Newsom D, Hu P et al (2012) Comparison of commercially-available exome capture kits in the diagnosis of neuromuscular disorders. Neuromuscul Disord 22:808

    Article  Google Scholar 

  82. Ewing CM, Ray AM, Lange EM, Zuhlke KA, Robbins CM, Tembe WD, Wiley KE, Isaacs SD, Johng D, Wang Y et al (2012) Germline mutations in HOXB13 and prostate-cancer risk. New Engl J Med 366:141–149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Mondal K, Ramachandran D, Patel VC, Hagen KR, Bose P, Cutler DJ, Zwick ME (2012) Excess variants in AFF2 detected by massively parallel sequencing of males with autism spectrum disorder. Hum Mol Genet 21:4356–4364

    Article  CAS  PubMed  Google Scholar 

  84. Myllykangas S, Buenrostro JD, Natsoulis G, Bell JM, Ji HP (2011) Efficient targeted resequencing of human germline and cancer genomes by oligonucleotide-selective sequencing. Nat Biotechnol 29:1024–1027

    Article  CAS  PubMed  Google Scholar 

  85. Sham P, Bader JS, Craig I, O’Donovan M, Owen M (2002) DNA Pooling: a tool for large-scale association studies. Nat Rev Genet 3:862–871

    Article  CAS  PubMed  Google Scholar 

  86. Norton N, Williams NM, O’Donovan MC, Owen MJ (2004) DNA pooling as a tool for large-scale association studies in complex traits. Ann Med 36:146–152

    Article  CAS  PubMed  Google Scholar 

  87. Nejentsev S, Walker N, Riches D, Egholm M, Todd JA (2009) Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324:387–389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Calvo SE, Tucker EJ, Compton AG, Kirby DM, Crawford G, Burtt NP, Rivas M, Guiducci C, Bruno DL, Goldberger OA et al (2010) High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency. Nat Genet 42:851–858

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Marchini J, Howie B (2010) Genotype imputation for genome-wide association studies. Nat Rev Genet 11:499–511

    Article  CAS  PubMed  Google Scholar 

  90. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM et al (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861

    Article  CAS  PubMed  Google Scholar 

  91. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  Google Scholar 

  92. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  Google Scholar 

  93. Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993

    Article  CAS  PubMed  Google Scholar 

  94. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, Erdos MR, Stringham HM, Chines PS, Jackson AU et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Liu EY, Li M, Wang W, Li Y (2013) MaCH-admix: genotype imputation for admixed populations. Genet Epidemiol 37:25–37

    Article  PubMed Central  PubMed  Google Scholar 

  96. Marchini J, Howie B, Myers S, McVean G, Donnelly P (2007) A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39:906–913

    Article  CAS  PubMed  Google Scholar 

  97. Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5:e1000529

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  98. Browning SR, Browning BL (2011) Haplotype phasing: existing methods and new developments. Nat Rev Genet 12:703–714

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR (2012) Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet 44:955–959

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet 81:1084–1097

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Browning BL, Browning SR (2009) A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 84:210–223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Li B, Leal SM (2008) Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet 83:311–321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Morgenthaler S, Thilly WG (2007) A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: a cohort allelic sums test (CAST). Mutat Res 615:28–56

    Article  CAS  PubMed  Google Scholar 

  104. Madsen BE, Browning SR (2009) A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet 5:e1000384

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  105. Morris AP, Zeggini E (2010) An evaluation of statistical approaches to rare variant analysis in genetic association studies. Genet Epidemiol 34:188–193

    Article  PubMed Central  PubMed  Google Scholar 

  106. Cohen JC, Kiss RS, Pertsemlidis A, Marcel YL, McPherson R, Hobbs HH (2004) Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 305:869–872

    Article  CAS  PubMed  Google Scholar 

  107. Fearnhead NS, Wilding JL, Winney B, Tonks S, Bartlett S, Bicknell DC, Tomlinson IP, Mortensen NJ, Bodmer WF (2004) Multiple rare variants in different genes account for multifactorial inherited susceptibility to colorectal adenomas. Proc Natl Acad Sci U S A 101:15992–15997

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Price AL, Kryukov GV, de Bakker PI, Purcell SM, Staples J, Wei LJ, Sunyaev SR (2010) Pooled association tests for rare variants in exon-resequencing studies. Am J Hum Genet 86:832–838

    Article  PubMed Central  PubMed  Google Scholar 

  109. Neale BM, Rivas MA, Voight BF, Altshuler D, Devlin B, Orho-Melander M, Kathiresan S, Purcell SM, Roeder K, Daly MJ (2011) Testing for an unusual distribution of rare variants. PLoS Genet 7:e1001322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Wu Michael C, Lee S, Cai T, Li Y, Boehnke M, Lin X (2011) Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 89:82–93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Basu S, Pan W (2011) Comparison of statistical tests for disease association with rare variants. Genet Epidemiol 35:606–619

    Article  PubMed Central  PubMed  Google Scholar 

  112. Lin DY, Tang ZZ (2011) A general framework for detecting disease associations with rare variants in sequencing studies. Am J Hum Genet 89:354–367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Lee S, Emond MJ, Bamshad MJ, Barnes KC, Rieder MJ, Nickerson DA, NHLBI GO Exome Sequencing Project – ESP Lung Project Team, Christiani DC, Wurfel MM, Lin X (2012) Optimal unified approach for rare-variant association testing with application to small-sample case–control whole-exome sequencing studies. Am J Hum Genet 91:224–237

    Google Scholar 

  114. Chen H, Meigs JB, Dupuis J (2013) Sequence kernel association test for quantitative traits in family samples. Genet Epidemiol 37:196–204

    Article  PubMed Central  PubMed  Google Scholar 

  115. Conneely KN, Boehnke M (2007) So many correlated tests, so little time! Rapid adjustment of P values for multiple correlated tests. Am J Hum Genet 81:1158–1168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Chapman J, Whittaker J (2008) Analysis of multiple SNPs in a candidate gene or region. Genet Epidemiol 32:560–566

    Article  PubMed Central  PubMed  Google Scholar 

  117. Pan W (2009) Asymptotic tests of association with multiple SNPs in linkage disequilibrium. Genet Epidemiol 33:497–507

    Article  PubMed Central  PubMed  Google Scholar 

  118. Wessel J, McDonald SM, Hinds DA, Stokowski RP, Javitz HS, Kennemer M, Krasnow R, Dirks W, Hardin J, Pitts SJ et al (2010) Resequencing of nicotinic acetylcholine receptor genes and association of common and rare variants with the Fagerstrom test for nicotine dependence. Neuropsychopharmacology 35:2392–2402

    Article  CAS  PubMed  Google Scholar 

  119. Xie P, Kranzler HR, Krauthammer M, Cosgrove KP, Oslin D, Anton RF, Farrer LA, Picciotto MR, Krystal JH, Zhao H et al (2011) Rare nonsynonymous variants in alpha-4 nicotinic acetylcholine receptor gene protect against nicotine dependence. Biol Psychiat 70:528–536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Haller G, Druley T, Vallania FL, Mitra RD, Li P, Akk G, Steinbach JH, Breslau N, Johnson E, Hatsukami D et al (2012) Rare missense variants in CHRNB4 are associated with reduced risk of nicotine dependence. Hum Mol Genet 21:647–655

    Article  CAS  PubMed  Google Scholar 

  121. Ho MK, Goldman D, Heinz A, Kaprio J, Kreek MJ, Li MD, Munafo MR, Tyndale RF (2010) Breaking barriers in the genomics and pharmacogenetics of drug addiction. Clin Pharmacol Ther 88:779–791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. Salas R, Orr-Urtreger A, Broide RS, Beaudet A, Paylor R, De Biasi M (2003) The nicotinic acetylcholine receptor subunit alpha 5 mediates short-term effects of nicotine in vivo. Mol Pharmacol 63:1059–1066

    Article  CAS  PubMed  Google Scholar 

  123. Salas R, Pieri F, De Biasi M (2004) Decreased signs of nicotine withdrawal in mice null for the beta4 nicotinic acetylcholine receptor subunit. J Neurosci 24:10035–10039

    Article  CAS  PubMed  Google Scholar 

  124. Salas R, Cook KD, Bassetto L, De Biasi M (2004) The alpha3 and beta4 nicotinic acetylcholine receptor subunits are necessary for nicotine-induced seizures and hypolocomotion in mice. Neuropharmacology 47:401–407

    Article  CAS  PubMed  Google Scholar 

  125. Fowler CD, Lu Q, Johnson PM, Marks MJ, Kenny PJ (2011) Habenular alpha5 nicotinic receptor subunit signalling controls nicotine intake. Nature 471:597–601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Hong LE, Hodgkinson CA, Yang Y, Sampath H, Ross TJ, Buchholz B, Salmeron BJ, Srivastava V, Thaker GK, Goldman D et al (2010) A genetically modulated, intrinsic cingulate circuit supports human nicotine addiction. Proc Natl Acad Sci U S A 107:13509–13514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Bierut LJ (2010) Convergence of genetic findings for nicotine dependence and smoking related diseases with chromosome 15q24–25. Trends Pharmacol Sci 31:46–51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Wang JC, Kapoor M, Goate AM (2012) The genetics of substance dependence. Annu Rev Genom Hum Genet 13:241–261

    Article  CAS  Google Scholar 

  129. Munafo MR, Matheson IJ, Flint J (2007) Association of the DRD2 gene Taq1A polymorphism and alcoholism: a meta-analysis of case–control studies and evidence of publication bias. Mol Psychiatry 12:454–461

    CAS  PubMed  Google Scholar 

  130. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The preparation of this review was supported by NIH grant DA-012844 to MDL. The authors thank Dr. David Bronson for his excellent editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming D. Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Yang, Z., Ma, J.Z. et al. Introduction to Deep Sequencing and Its Application to Drug Addiction Research with a Focus on Rare Variants. Mol Neurobiol 49, 601–614 (2014). https://doi.org/10.1007/s12035-013-8541-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8541-4

Keywords

Navigation