Skip to main content

Advertisement

Log in

MicroRNAs: Novel Regulators of Oligodendrocyte Differentiation and Potential Therapeutic Targets in Demyelination-Related Diseases

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

An Erratum to this article was published on 21 January 2012

Abstract

MicroRNAs (miRNAs or miRs) are a class of endogenous small non-coding RNAs that consist of about 22 nucleotides and play critical roles in various biological processes, including cell proliferation, differentiation, apoptosis, and tumorigenesis. In recent years, some specific miRNA, such as miR-219, miR-138, miR-9, miR-23, and miR-19b were found to participate in the regulation of oligodendrocyte (OL) differentiation and myelin maintenance, as well as in the pathogenesis of demyelination-related diseases (e.g., multiple sclerosis, ischemic stroke, and leukodystrophy). These miRNAs control their target mRNA or regulate the protein levels of some signaling pathways, and participate in OL differentiation and the pathogenesis of demyelination-related diseases. During pathologic processes, the expression levels of specific miRNAs are dynamically altered. Therefore, miRNAs act as diagnostic and prognostic indicators of defects in OL differentiation and demyelination-related diseases, and they can provide potential targets for therapeutic drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mi S, Miller RH, Tang W et al (2009) Promotion of central nervous system remyelination by induced differentiation of oligodendrocyte precursor cells. Ann Nneurol 65:304–315

    Article  CAS  Google Scholar 

  2. Emery B (2010) Transcriptional and post-transcriptional control of CNS myelination. Curr Opin Neurobiol 20:601–607

    Article  PubMed  CAS  Google Scholar 

  3. Feng Y, Swiss VA, Nguyen T et al (2011) Identification of a gene regulatory network necessary for the initiation of oligodendrocyte differentiation. Plos One 6:e18088

    Article  Google Scholar 

  4. Junker A, Hohlfeld R, Meinl E (2011) The emerging role of microRNAs in multiple sclerosis. Nat Rev Neurol 7:56–59

    Article  PubMed  CAS  Google Scholar 

  5. Lin ST, Ptacek LJ, Fu YH (2011) Adult-onset autosomal dominant leukodystrophy: linking nuclear envelope to myelin. J Neurosci 31:1163–1166

    Article  PubMed  CAS  Google Scholar 

  6. Miron VE, Kuhlmann T, Antel JP (2011) Cells of the oligodendroglial lineage, myelination, and remyelination. Biochim Biophys Acta 1812:184–193

    PubMed  CAS  Google Scholar 

  7. Tan KS, Armugam A, Sepramaniam S et al (2009) Expression profile of MicroRNAs in young stroke patients. Plos One 4:e7689

    Article  PubMed  Google Scholar 

  8. Verrier JD, Lau P, Hudson L, Murashov AK, Renne R, Notterpek L (2009) Peripheral myelin protein 22 is regulated post-transcriptionally by miRNA-29a. Glia 57:1265–1279

    Article  PubMed  Google Scholar 

  9. Pluchino S, Martino G (2005) The therapeutic use of stem cells for myelin repair in autoimmune demyelinating disorders. J Neurol Sci 233:117–119

    Article  PubMed  CAS  Google Scholar 

  10. Potter GB, Rowitch DH, Petryniak MA (2011) Myelin restoration: progress and prospects for human cell replacement therapies. Arch Immunol Ther Exp 59:179–193

    Article  Google Scholar 

  11. Liu J, Casaccia P (2010) Epigenetic regulation of oligodendrocyte identity. Trends Neurosci 33:193–201

    Article  PubMed  CAS  Google Scholar 

  12. Mehler M (2008) Epigenetic principles and mechanisms underlying nervous system functions in health and disease. Prog Neurobiol 86:305–341

    Article  PubMed  CAS  Google Scholar 

  13. Yu Y, Casaccia P, Lu QR (2010) Shaping the oligodendrocyte identity by epigenetic control. Epigenetics 5:124–128

    Article  PubMed  CAS  Google Scholar 

  14. Dugas JC, Cuellar TL, Scholze A et al (2010) Dicer1 and miR-219 are required for normal oligodendrocyte differentiation and myelination. Neuron 65:597–611

    Article  PubMed  CAS  Google Scholar 

  15. Letzen BS, Liu C, Thakor NV, Gearhart JD, All AH, Kerr CL (2010) MicroRNA expression profiling of oligodendrocyte differentiation from human embryonic stem cells. Plos One 5:e10480

    Article  PubMed  Google Scholar 

  16. Yun B, Anderegg A, Menichella D, Wrabetz L, Feltri ML, Awatramani R (2010) MicroRNA-deficient Schwann cells display congenital hypomyelination. J Neurosci 30:7722–7728

    Article  PubMed  CAS  Google Scholar 

  17. Zhao X, He X, Han X et al (2010) MicroRNA-mediated control of oligodendrocyte differentiation. Neuron 65:612–626

    Article  PubMed  CAS  Google Scholar 

  18. Dugas JC, Notterpek L (2011) MicroRNAs in oligodendrocyte and Schwann cell differentiation. Dev Neurosci 33:14–20

    Article  PubMed  CAS  Google Scholar 

  19. He X, Yu Y, Awatramani R, Lu QR (2011) Unwrapping myelination by microRNAs. Neuroscientist. doi:10.1177/1073858410392382

  20. Lewis BP, Shih I (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    Article  PubMed  CAS  Google Scholar 

  21. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed  CAS  Google Scholar 

  22. Eulalio A, Huntzinger E, Izaurralde E (2008) Getting to the root of miRNA-mediated gene silencing. Cell 132:9–14

    Article  PubMed  CAS  Google Scholar 

  23. Khraiwesh B, Arif MA, Seumel GI et al (2010) Transcriptional control of gene expression by microRNAs. Cell 140:111–122

    Article  PubMed  CAS  Google Scholar 

  24. Wienholds E, Plasterk R (2005) MicroRNA function in animal development. FEBS Lett 579:5911–5922

    Article  PubMed  CAS  Google Scholar 

  25. Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840

    Article  PubMed  CAS  Google Scholar 

  26. Zheng K, Li H, Zhu Y, Zhu Q, Qiu M (2010) MicroRNAs are essential for the developmental switch from neurogenesis to gliogenesis in the developing spinal cord. J Neurosci 30:8245–8250

    Article  PubMed  CAS  Google Scholar 

  27. Zheng K, Li H, Huang H, Qiu M (2011) MicroRNAs and glial cell development. Neuroscientist. doi:10.1177/1073858411398322

  28. Kawase-Koga Y, Otaegi G, Sun T (2009) Different timings of dicer deletion affect neurogenesis and gliogenesis in the developing mouse central nervous system. Dev Dyn 238:2800–2812

    Article  PubMed  Google Scholar 

  29. Shin D, Shin JY, McManus MT, Ptacek LJ, Fu YH (2009) Dicer ablation in oligodendrocytes provokes neuronal impairment in mice. Ann Neurol 66:843–857

    Article  PubMed  CAS  Google Scholar 

  30. Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS (2009) MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137:647–658

    Article  PubMed  CAS  Google Scholar 

  31. Lau P, Verrier JD, Nielsen JA, Johnson KR, Notterpek L, Hudson LD (2008) Identification of dynamically regulated microRNA and mRNA networks in developing oligodendrocytes. J Neurosci 28:11720–11730

    Article  PubMed  CAS  Google Scholar 

  32. Bian S, Sun T (2011) Functions of noncoding RNAs in neural development and neurological diseases. Mol Neurobiol 44(3):359–373

    Article  PubMed  CAS  Google Scholar 

  33. Conrad R, Barrier M, Ford LP (2006) Role of miRNA and miRNA processing factors in development and disease. Birth Defects Res C 78:107–117

    Article  CAS  Google Scholar 

  34. Stefani G, Slack FJ (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9:219–230

    Article  PubMed  CAS  Google Scholar 

  35. Budde H, Schmitt S, Fitzner D, Opitz L, Salinas-Riester G, Simons M (2010) Control of oligodendroglial cell number by the miR-17-92 cluster. Development 137:2127–2132

    Article  PubMed  CAS  Google Scholar 

  36. Bradl M, Lassmann H (2010) Oligodendrocytes: biology and pathology. Acta Neuropathol 119:37–53

    Article  PubMed  Google Scholar 

  37. Olive V, Bennett MJ, Walker JC et al (2009) miR-19 is a key oncogenic component of mir-17-92. Genes & Dev 23:2839–2849

    Article  CAS  Google Scholar 

  38. Hayashita Y (2005) A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65:9628–9632

    Article  PubMed  CAS  Google Scholar 

  39. Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S, Yoshida Y, Seto M (2004) Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res 64:3087–3095

    Article  PubMed  CAS  Google Scholar 

  40. Okado H, Ohtaka-Maruyama C, Sugitani Y et al (2009) The transcriptional repressor RP58 is crucial for cell-division patterning and neuronal survival in the developing cortex. Dev Biol 331:140–151

    Article  PubMed  CAS  Google Scholar 

  41. Kocerha J, Faghihi MA, Lopez-Toledano MA et al (2009) MicroRNA-219 modulates NMDA receptor-mediated neurobehavioral dysfunction. PNAS 106:3507–3512

    Article  PubMed  CAS  Google Scholar 

  42. Burzomato V, Frugier G, Pérez-Otaño I, Kittler JT, Attwell D (2010) The receptor subunits generating NMDA receptor mediated currents in oligodendrocytes. J Physiol 588:3403–3414

    Article  PubMed  CAS  Google Scholar 

  43. Micu I, Jiang Q, Coderre E, Ridsdale A, Zhang L, Woulfe J, Yin X, Trapp BD, McRory JE, Rehak R et al (2006) NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 439:988–992

    PubMed  CAS  Google Scholar 

  44. Salter MG, Fern R (2005) NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature 438:1167–1171

    Article  PubMed  CAS  Google Scholar 

  45. De Biase LM, Kang SH, Baxi EG et al (2011) NMDA receptor signaling in oligodendrocyte progenitors is not required for oligodendrogenesis and myelination. J Neurosci 31:12650–12662

    Article  PubMed  Google Scholar 

  46. Zhao C, Sun G, Li S, Shi Y (2009) A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 16:365–371

    Article  PubMed  CAS  Google Scholar 

  47. Delaloy C, Liu L, Lee JA et al (2010) MicroRNA-9 coordinates proliferation and migration of human embryonic stem cell-derived neural progenitors. Cell Stem Cell 6:323–335

    Article  PubMed  CAS  Google Scholar 

  48. Emery B, Agalliu D, Cahoy JD et al (2009) Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination. Cell 138:172–185

    Article  PubMed  CAS  Google Scholar 

  49. Madathil SK, Nelson PT, Saatman KE, Wilfred BR (2011) MicroRNAs in CNS injury: potential roles and therapeutic implications. BioEssays 33:21–26

    Article  PubMed  CAS  Google Scholar 

  50. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ, Wang K (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56:1733–1741

    Article  PubMed  CAS  Google Scholar 

  51. Nakahara J, Aiso S, Suzuki N (2010) Autoimmune versus oligodendrogliopathy: the pathogenesis of multiple sclerosis. Arch Immunol Ther Exp 58:325–333

    Article  CAS  Google Scholar 

  52. Kuhlmann T, Miron V, Cuo Q, Wegner C, Antel J, Bruck W (2008) Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131:1749–1758

    Article  PubMed  CAS  Google Scholar 

  53. Hvilsted Nielsen H, Toft-Hansen H, Lambertsen KL, Owens T, Finsen B (2011) Stimulation of adult oligodendrogenesis by myelin-specific T cells. Am J Pathol 179:2028–2041

    Article  PubMed  Google Scholar 

  54. Fenoglio C, Cantoni C, De Riz M et al (2011) Expression and genetic analysis of miRNAs involved in CD4+ cell activation in patients with multiple sclerosis. Neurosci Lett 504:9–12

    Article  PubMed  CAS  Google Scholar 

  55. Boneschi FM, Fenoglio C, Brambilla P et al (2011) MicroRNA and mRNA expression profile screening in multiple sclerosis patients to unravel novel pathogenic steps and identify potential biomarkers. Neurosci Lett. doi:10.1016/j.neulet.2011.11.006

  56. Tzartos JS, Friese MA, Craner MJ et al (2008) Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol 172:146–155

    Article  PubMed  CAS  Google Scholar 

  57. Waschbisch A, Atiya M, Linker RA, Potapov S, Schwab S, Derfuss T (2011) Glatiramer acetate treatment normalizes deregulated microRNA expression in relapsing remitting multiple sclerosis. Plos One 6:e24604

    Article  PubMed  CAS  Google Scholar 

  58. Du C, Liu C, Kang J et al (2009) MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nature Immunol 10:1252–1259

    Article  CAS  Google Scholar 

  59. Junker A, Krumbholz M, Eisele S et al (2009) MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain 132:3342–3352

    Article  PubMed  Google Scholar 

  60. Rivest S (2009) Regulation of innate immune responses in the brain. Nat Rev Immunol 9:429–439

    Article  PubMed  CAS  Google Scholar 

  61. Grimson A, Farh KKH, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    Article  PubMed  CAS  Google Scholar 

  62. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  PubMed  CAS  Google Scholar 

  63. Keller A, Leidinger P, Lange J et al (2009) Multiple sclerosis: microRNA expression profiles accurately differentiate patients with relapsing-remitting disease from healthy controls. Plos One 4:e7440

    Article  PubMed  Google Scholar 

  64. Otaegui D, Baranzini SE, Armananzas R et al (2009) Differential microRNA expression in PBMC from multiple sclerosis patients. Plos One 4:e6309

    Article  PubMed  Google Scholar 

  65. Noorbakhsh F, Ellestad KK, Maingat F, Warren KG, Han MH, Steinman L, Baker GB, Power C (2011) Impaired neurosteroid synthesis in multiple sclerosis. Brain 134:2703–2721

    Article  PubMed  Google Scholar 

  66. Otaegui D et al (2011) Methods for the diagnosis of multiple sclerosis based on its microRNA expression profiling. EP2290102 A1/WO2011003989

  67. Cox MB, Cairns MJ, Gandhi KS et al (2010) MicroRNAs miR-17 and miR-20a inhibit T cell activation genes and are under-expressed in MS whole blood. Plos One 5:e12132

    Article  PubMed  Google Scholar 

  68. Lindberg RLP, Hoffmann F, Mehling M, Kuhle J, Kappos L (2010) Altered expression of miR-17-5p in CD4 + lymphocytes of relapsing-remitting multiple sclerosis patients. Eur J Immunol 40:888–898

    Article  PubMed  CAS  Google Scholar 

  69. McIver SR, Muccigrosso M, Gonzales ER et al (2010) Oligodendrocyte degeneration and recovery after focal cerebral ischemia. Neuroscience 169:1364–1375

    Article  PubMed  CAS  Google Scholar 

  70. Dharap A, Vemuganti R (2010) Ischemic pre-conditioning alters cerebral microRNAs that are upstream to neuroprotective signaling pathways. J Neurochem 113:1685–1691

    PubMed  CAS  Google Scholar 

  71. Jeyaseelan K, Lim KY, Armugam A (2008) MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 39:959–966

    Article  PubMed  CAS  Google Scholar 

  72. Liu DZ, Tian Y, Ander BP et al (2009) Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab 30:92–101

    Article  PubMed  CAS  Google Scholar 

  73. Yuan Y, Wang JY, Xu LY, Cai R, Chen Z, Luo BY (2010) MicroRNA expression changes in the hippocampi of rats subjected to global ischemia. J Clin Neurosci 17:774–778

    Article  PubMed  CAS  Google Scholar 

  74. Ziu M, Fletcher L, Rana S, Jimenez DF, Digicaylioglu M (2011) Temporal differences in microRNA expression patterns in astrocytes and neurons after ischemic injury. Plos One 6:e14724

    Article  PubMed  CAS  Google Scholar 

  75. Veiga S, Ly J, Chan PH, Bresnahan JC, Beattie MS (2011) SOD1 overexpression improves features of the oligodendrocyte precursor response in vitro. Neurosci Lett 503:10–14

    Article  PubMed  CAS  Google Scholar 

  76. Lusardi TA, Farr CD, Faulkner CL et al (2009) Ischemic preconditioning regulates expression of microRNAs and a predicted target, MeCP2, in mouse cortex. J Cereb Blood Flow Metab 30:744–756

    Article  PubMed  Google Scholar 

  77. de León-Guerrero SD, Pedraza-Alva G, Pérez-Martínez L (2011) In sickness and in health: the role of methyl-CpG binding protein 2 in the central nervous system. Eur J Neurosci 33:1563–1574

    Article  PubMed  Google Scholar 

  78. Lee ST, Chu K, Jung KH et al (2010) MicroRNAs induced during ischemic preconditioning * supplemental methods. Stroke 41:1646–1651

    Article  PubMed  Google Scholar 

  79. Padiath QS, Saigoh K, Schiffmann R, Asahara H, Yamada T, Koeppen A, Hogan K, Ptácek LJ, Fu YH (2006) Lamin B1 duplications cause autosomal dominant leukodystrophy. Nat Genet 38:1114–1123

    Article  PubMed  CAS  Google Scholar 

  80. Lin ST, Fu YH (2009) miR-23 regulation of lamin B1 is crucial for oligodendrocyte development and myelination. Dis Model Mech 2:178–188

    Article  PubMed  CAS  Google Scholar 

  81. Wuchty S, Arjona D, Li A et al (2011) Prediction of associations between microRNAs and gene expression in glioma biology. Plos One 6:e14681

    Article  PubMed  CAS  Google Scholar 

  82. Kremer D, Aktas O, Hartung HP, Küry P (2011) The complex world of oligodendroglial differentiation inhibitors. Ann Neurol 69:602–618

    Article  PubMed  CAS  Google Scholar 

  83. Weiler J, Hunziker J, Hall J et al (2006) Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Ther 13:496–502

    Article  PubMed  CAS  Google Scholar 

  84. Ebert MS, Neilson JR, Sharp PA et al (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Meth 4:721–726

    Article  CAS  Google Scholar 

  85. Stenvang J, Lindow M, Kauppinen S (2008) Targeting of microRNAs for therapeutics. Biochem Soc Trans 36:1197–1200

    Article  PubMed  CAS  Google Scholar 

  86. Elmén J, Lindow M, Schütz S et al (2008) LNA-mediated microRNA silencing in non-human primates. Nature 452:896–899

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (grant no. 31071056) and the Natural Science Foundation Project of CQ CSTC (2011jjA10026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Xiang Yao.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12035-012-8238-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, JS., Yao, ZX. MicroRNAs: Novel Regulators of Oligodendrocyte Differentiation and Potential Therapeutic Targets in Demyelination-Related Diseases. Mol Neurobiol 45, 200–212 (2012). https://doi.org/10.1007/s12035-011-8231-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-011-8231-z

Keywords

Navigation