Skip to main content
Log in

Targeting the Hippocampal Mossy Fiber Synapse for the Treatment of Psychiatric Disorders

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

It is widely known that new neurons are continuously generated in the dentate gyrus of the hippocampus in the adult mammalian brain. This neurogenesis has been implicated in depression and antidepressant treatments. Recent evidence also suggests that the dentate gyrus is involved in the neuropathology and pathophysiology of schizophrenia and other related psychiatric disorders. Especially, abnormal neuronal development in the dentate gyrus may be a plausible risk factor for the diseases. The synapse made by the mossy fiber, the output fiber of the dentate gyrus, plays a critical role in regulating neuronal activity in its target CA3 area. The mossy fiber synapse is characterized by remarkable activity-dependent short-term synaptic plasticity that is established during the postnatal development and is supposed to be central to the functional role of the mossy fiber. Any defects, including developmental abnormalities, in the dentate gyrus and drugs acting on the dentate gyrus can modulate the mossy fiber-CA3 synaptic transmission, which may eventually affect hippocampal functions. In this paper, I review recent evidence for involvement of the dentate gyrus and mossy fiber synapse in psychiatric disorders and discuss potential importance of drugs targeting the mossy fiber synapse either directly or indirectly in the therapeutic treatments of psychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lawrie SM, Abukmeil SS (1998) Brain abnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies. Br J Psychiatry 172:110–120

    PubMed  CAS  Google Scholar 

  2. Videbech P, Ravnkilde B (2004) Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry 161:1957–1966

    PubMed  Google Scholar 

  3. Steen RG, Mull C, McClure R, Hamer RM, Lieberman JA (2006) Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies. Br J Psychiatry 188:510–518

    PubMed  Google Scholar 

  4. Shergill SS, Brammer MJ, Williams SCR, Murray RM, McGuire PK (2000) Mapping auditory hallucinations in schizophrenia using functional magnetic resonance imaging. Arch Gen Psychiatry 57:1033–1038

    PubMed  CAS  Google Scholar 

  5. Oertel V, Rotarska-Jagiela A, van de Ven VG, Haenschel C, Maurer K, Linden DEJ (2007) Visual hallucinations in schizophrenia investigated with functional magnetic resonance imaging. Psychiatry Res 156:269–273

    PubMed  Google Scholar 

  6. Takao K, Yamasaki N, Miyakawa T (2007) Impact of brain-behavior phenotypying of genetically-engineered mice on research of neuropsychiatric disorders. Neurosci Res 58:124–132

    PubMed  CAS  Google Scholar 

  7. Zeng H, Chattarji S, Barbarosie M, Rondi-Reig L, Philpot BD, Miyakawa T, Bear MF, Tonegawa S (2001) Forebrain-specific calcineurin knockout selectively impairs bidirectional synaptic plasticity and working/episodic-like memory. Cell 107:617–629

    PubMed  CAS  Google Scholar 

  8. Miyakawa T, Leiter LM, Gerber DJ, Gainetdinov RR, Sotnikova TD, Zeng H, Caron MG, Tonegawa S (2003) Conditional calcineurin knockout mice exhibit multiple abnormal behaviors related to schizophrenia. Proc Natl Acad Sci USA 100:8987–8992

    PubMed  CAS  Google Scholar 

  9. Gerber DJ, Hall D, Miyakawa T, Demars S, Gogos JA, Karayiorgou M, Tonegawa S (2003) Evidence for association of schizophrenia with genetic variation in the 8p21.3 gene, PPP3CC, encoding the calcineurin gamma subunit. Proc Natl Acad Sci USA 100:8993–8998

    PubMed  CAS  Google Scholar 

  10. Horiuchi Y, Ishiguro H, Koga M, Inada T, Iwata N, Ozaki N, Ujike H, Muratake T, Someya T, Arinami T (2007) Support for association of the PPP3CC gene with schizophrenia. Mol Psychiatry 12:891–893

    PubMed  CAS  Google Scholar 

  11. Liu YL, Fann CSJ, Liu CM, Chang CC, Yang WC, Hung SI, Yu SL, Hwang TJ, Hsieh MH, Liu CC, Tsuang MM, Wu JY, Jou YS, Faraone SV, Tsuang MT, Chen WJ, Hwu H-G (2007) More evidence supports the association of PPP3CC with schizophrenia. Mol Psychiatry 12:966–974

    PubMed  CAS  Google Scholar 

  12. O’Reilly RC, McClelland JL (1994) Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off. Hippocampus 4:661–682

    PubMed  Google Scholar 

  13. Kesner RP, Gilbert PE, Wallenstein GV (2000) Testing neural network models of memory with behavioral experiments. Curr Opin Neurobiol 10:260–265

    PubMed  CAS  Google Scholar 

  14. Gilbert PE, Kesner RP, Lee I (2001) Dissociating hippocampal subregions: a double dissociation between dentate gyrus and CA1. Hippocampus 11:626–636

    PubMed  CAS  Google Scholar 

  15. Leutgeb JK, Leutgeb S, Moser M-B, Moser EI (2007) Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315:961–966

    PubMed  CAS  Google Scholar 

  16. Jung MW, McNaughton BL (1993) Spatial selectivity of unit activity in the hippocampal granular layer. Hippocampus 3:165–182

    PubMed  CAS  Google Scholar 

  17. Liu X-S, Tilwalli S, Ye G-l, Lio PA, Pasternak JF, Trommer BL (2000) Morphologic and electrophysiologic maturation in developing dentate gyrus granule cells. Brain Res 856:202–212

    PubMed  CAS  Google Scholar 

  18. Ambrogini P, Lattanzi D, Ciuffoli S, Agostini D, Bertini L, Stocchi V, Santi S, Cuppini R (2004) Morpho-functional characterization of neuronal cells at different stages of maturation in granule cell layer of adult rat dentate gyrus. Brain Res 1017:21–31

    PubMed  CAS  Google Scholar 

  19. Schmidt-Hieber C, Jonas P, Bischofberger J (2004) Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429:184–187

    PubMed  CAS  Google Scholar 

  20. Yamasaki N, Maekawa M, Kobayashi K, Kajii Y, Maeda J, Soma M, Takao K, Tanda K, Ohira K, Toyama K, Kanzaki K, Fukunaga K, Sudo Y, Ichinose H, Ikeda M, Iwata N, Ozaki N, Suzuki H, Higuchi M, Suhara T, Yuasa S, Miyakawa T (2008) Alpha-CaMKII deficiency causes immature dentate gyrus, a novel candidate endophenotype of psychiatric disorders. Mol Brain 1:6

    PubMed  Google Scholar 

  21. Amaral DG, Dent JA (1981) Development of the mossy fibers of the dentate gyrus: I. A light and electron microscopic study of the mossy fibers and their expansions. J Comp Neurol 195:51–86

    PubMed  CAS  Google Scholar 

  22. McNaughton BL, Morris RGM (1987) Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends Neurosci 10:408–415

    Google Scholar 

  23. Rolls ET, Treves A (1998) Neural networks and brain function. Oxford University Press, New York, pp 95–135

    Google Scholar 

  24. Kobayashi K, Manabe T, Takahashi T (1996) Presynaptic long-term depression at the hippocampal mossy fiber-CA3 synapse. Science 273:648–650

    PubMed  CAS  Google Scholar 

  25. Salin PA, Scanziani M, Malenka RC, Nicoll RA (1996) Distinct short-term plasticity at two excitatory synapses in the hippocampus. Proc Natl Acad Sci USA 93:13304–13309

    PubMed  CAS  Google Scholar 

  26. Mori-Kawakami F, Kobayashi K, Takahashi T (2003) Developmental decrease in synaptic facilitation at the mouse hippocampal mossy fibre synapse. J Physiol 553:37–48

    PubMed  CAS  Google Scholar 

  27. Marchal C, Mulle C (2004) Postnatal maturation of mossy fibre excitatory transmission in mouse CA3 pyramidal cells: a potential role for kainate receptors. J Physiol 561:27–37

    PubMed  CAS  Google Scholar 

  28. Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405

    PubMed  CAS  Google Scholar 

  29. Henze DA, Wittner L, Buzsáki G (2002) Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo. Nat Neurosci 5:790–795

    PubMed  CAS  Google Scholar 

  30. Kobayashi K, Poo M-m (2004) Spike train timing-dependent associative modification of hippocampal CA3 recurrent synapses by mossy fibers. Neuron 41:445–454

    PubMed  CAS  Google Scholar 

  31. Claiborne BJ, Amaral DG, Cowan WM (1986) A light and electron microscopic analysis of the mossy fibers of the rat dentate gyrus. J Comp Neurol 246:435–458

    PubMed  CAS  Google Scholar 

  32. Scharfman HE, Kunkel DD, Schwartzkroin PA (1990) Synaptic connections of dentate granule cells and hilar neurons: results of paired intracellular recordings and intracellular horseradish peroxidase injections. Neuroscience 37:693–707

    PubMed  CAS  Google Scholar 

  33. Amaral DG (1978) A Golgi study of cell types in the hilar region of the hippocampus in the rat. J Comp Neurol 182:851–914

    PubMed  CAS  Google Scholar 

  34. Scharfman HE (1995) Electrophysiological evidence that dentate hilar mossy cells are excitatory and innervate both granule cells and interneurons. J Neurophysiol 74:179–194

    PubMed  CAS  Google Scholar 

  35. Lysetskiy M, Földy C, Soltesz I (2005) Long- and short-term plasticity at mossy fiber synapses on mossy cells in the rat dentate gyrus. Hippocampus 15:691–696

    PubMed  Google Scholar 

  36. Malenka RC, Nicoll RA (1993) NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci 16:521–527

    PubMed  CAS  Google Scholar 

  37. Harris EW, Cotman CW (1986) Long-term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl D-aspartate antagonists. Neurosci Lett 70:132–137

    PubMed  CAS  Google Scholar 

  38. Zalutsky RA, Nicoll RA (1990) Comparison of two forms of long-term potentiation in single hippocampal neurons. Science 248:1619–1624

    PubMed  CAS  Google Scholar 

  39. Ito I, Sugiyama H (1991) Roles of glutamate receptors in long-term potentiation at hippocampal mossy fiber synapses. Neuroreport 2:333–336

    PubMed  CAS  Google Scholar 

  40. Castillo PE, Weisskopf MG, Nicoll RA (1994) The role of Ca2+channels in hippocampal mossy fiber synaptic transmission and long-term potentiation. Neuron 12:261–269

    PubMed  CAS  Google Scholar 

  41. Jaffe D, Johnston D (1990) Induction of long-term potentiation at hippocampal mossy-fiber synapses follows a Hebbian rule. J Neurophysiol 64:948–960

    PubMed  CAS  Google Scholar 

  42. Urban NN, Barrionuevo G (1996) Induction of Hebbian and non-Hebbian mossy fiber long-term potentiation by distinct patterns of high-frequency stimulation. J Neurosci 16:4293–4299

    PubMed  CAS  Google Scholar 

  43. Yeckel MF, Kapur A, Johnston D (1999) Multiple forms of LTP in hippocampal CA3 neurons use a common postsynaptic mechanism. Nat Neurosci 2:625–633

    PubMed  CAS  Google Scholar 

  44. Tzounopoulos T, Janz R, Südhof TC, Nicoll RA, Malenka RC (1998) A role for cAMP in long-term depression at hippocampal mossy fiber synapses. Neuron 21:837–845

    PubMed  CAS  Google Scholar 

  45. Lei S, Pelkey KA, Topolnik L, Congar P, Lacaille J-C, McBain CJ (2003) Depolarization-induced long-term depression at hippocampal mossy fiber-CA3 pyramidal neuron synapses. J Neurosci 23:9786–9795

    PubMed  CAS  Google Scholar 

  46. Yokoi M, Kobayashi K, Manabe T, Takahashi T, Sakaguchi I, Katsuura G, Shigemoto R, Ohishi H, Nomura S, Nakamura K, Nakao K, Katsuki M, Nakanishi S (1996) Impairment of hippocampal mossy fiber LTD in mice lacking mGluR2. Science 273:645–647

    PubMed  CAS  Google Scholar 

  47. Scanziani M, Salin PA, Vogt KE, Malenka RC, Nicoll RA (1997) Use-dependent increases in glutamate concentration activate presynaptic metabotropic glutamate receptors. Nature 385:630–634

    PubMed  CAS  Google Scholar 

  48. Schmitz D, Mellor J, Nicoll RA (2001) Presynaptic kainate receptor mediation of frequency facilitation at hippocampal mossy fiber synapses. Science 291:1972–1976

    PubMed  CAS  Google Scholar 

  49. Nicoll RA, Schmitz D (2005) Synaptic plasticity at hippocampal mossy fibre synapses. Nat Rev Neurosci 6:863–876

    PubMed  CAS  Google Scholar 

  50. Weisskopf MG, Zalutsky RA, Nicoll RA (1993) The opioid peptide dynorphin mediates heterosynaptic depression of hippocampal mossy fibre synapses and modulates long-term potentiation. Nature 362:423–427

    PubMed  CAS  Google Scholar 

  51. Harrison JM, Allen RG, Pellegrino MJ, Williams JT, Manzoni OJ (2002) Chronic morphine treatment alters endogenous opioid control of hippocampal mossy fiber synaptic transmission. J Neurophysiol 87:2464–2470

    PubMed  CAS  Google Scholar 

  52. Moore KA, Nicoll RA, Schmitz D (2003) Adenosine gates synaptic plasticity at hippocampal mossy fiber synapses. Proc Natl Acad Sci USA 100:14397–14402

    PubMed  CAS  Google Scholar 

  53. Kukley M, Schwan M, Fredholm BB, Dietrich D (2005) The role of extracellular adenosine in regulating mossy fiber synaptic plasticity. J Neurosci 25:2832–2837

    PubMed  CAS  Google Scholar 

  54. Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55

    PubMed  CAS  Google Scholar 

  55. Alle H, Geiger JRP (2006) Combined analog and action potential coding in hippocampal mossy fibers. Science 311:1290–1293

    PubMed  CAS  Google Scholar 

  56. Nusser Z, Mody I (2002) Selective modulation of tonic and phasic inhibitions in dentate gyrus granule cells. J Neurophysiol 87:2624–2628

    PubMed  CAS  Google Scholar 

  57. Kobayashi K, Ikeda Y, Suzuki H (2006) Locomotor activity correlates with modifications of hippocampal mossy fibre synaptic transmission. Eur J Neurosci 24:1867–1873

    PubMed  Google Scholar 

  58. Kobayashi K, Suzuki H (2007) Dopamine selectively potentiates hippocampal mossy fiber to CA3 synaptic transmission. Neuropharmacology 52:552–561

    PubMed  CAS  Google Scholar 

  59. Kobayashi K, Ikeda Y, Haneda E, Suzuki H (2008) Chronic fluoxetine bidirectionally modulates potentiating effects of serotonin on the hippocampal mossy fiber synaptic transmission. J Neurosci 28:6272–6280

    PubMed  CAS  Google Scholar 

  60. Hopkins WF, Johnston D (1988) Noradrenergic enhancement of long-term potentiation at mossy fiber synapses in the hippocampus. J Neurophysiol 59:667–687

    PubMed  CAS  Google Scholar 

  61. Weisskopf MG, Castillo PE, Zalutsky RA, Nicoll RA (1994) Mediation of hippocampal mossy fiber long-term potentiation by cyclic AMP. Science 265:1878–1882

    PubMed  CAS  Google Scholar 

  62. O’Donnell JM, Zhang H-T (2004) Antidepressant effects of inhibitors of cAMP phosphodiesterase (PDE4). Trends Pharmacol Sci 25:158–163

    PubMed  Google Scholar 

  63. Maxwell CR, Kanes SJ, Abel T, Siegel SJ (2004) Phosphodiesterase inhibitors: a novel mechanism for receptor-independent antipsychotic medications. Neuroscience 129:101–107

    PubMed  CAS  Google Scholar 

  64. Siuciak JA, Chapin DS, McCarthy SA, Martin AN (2007) Antipsychotic profile of rolipram: efficacy in rats and reduced sensitivity in mice deficient in the phosphodiesterase-4B (PDE4B) enzyme. Psychopharmacology (Berl) 192:415–424

    CAS  Google Scholar 

  65. Gould E, Tanapat P, Hastings NB, Shors TJ (1999) Neurogenesis in adulthood: a possible role in learning. Trends Cogn Sci 3:186–192

    PubMed  Google Scholar 

  66. van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415:1030–1034

    PubMed  Google Scholar 

  67. Jessberger S, Kempermann G (2003) Adult-born hippocampal neurons mature into activity-dependent responsiveness. Eur J Neurosci 18:2707–2712

    PubMed  Google Scholar 

  68. Toni N, Laplagne DA, Zhao C, Lombardi G, Ribak CE, Gage FH, Schinder AF (2008) Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci 11:901–907

    PubMed  CAS  Google Scholar 

  69. Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20:9104–9110

    PubMed  CAS  Google Scholar 

  70. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809

    PubMed  CAS  Google Scholar 

  71. Airan RD, Meltzer LA, Roy M, Gong Y, Chen H, Deisseroth K (2007) High-speed imaging reveals neurophysiological links to behavior in an animal model of depression. Science 317:819–823

    PubMed  CAS  Google Scholar 

  72. Wang J-W, David DJ, Monckton JE, Battaglia F, Hen R (2008) Chronic fluoxetine stimulates maturation and synaptic plasticity of adult-born hippocampal granule cells. J Neurosci 28:1374–1384

    PubMed  CAS  Google Scholar 

  73. Warner-Schmidt JL, Duman RS (2006) Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus 16:239–249

    PubMed  CAS  Google Scholar 

  74. Surget A, Saxe M, Leman S, Ibarguen-Vargas Y, Chalon S, Griebel G, Hen R, Belzung C (2008) Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal. Biol Psychiatry 64:293–301

    PubMed  CAS  Google Scholar 

  75. Reif A, Fritzen S, Finger M, Strobel A, Lauer M, Schmitt A, Lesch K-P (2006) Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry 11:514–522

    PubMed  CAS  Google Scholar 

  76. Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59:1116–1127

    PubMed  CAS  Google Scholar 

  77. Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S (1997) Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci 17:2295–2313

    PubMed  CAS  Google Scholar 

  78. Smith MA, Zhang L-X, Lyons WE, Mamounas LA (1997) Anterograde transport of endogenous brain-derived neurotrophic factor in hippocampal mossy fibers. Neuroreport 8:1829–1834

    PubMed  CAS  Google Scholar 

  79. Adachi M, Barrot M, Autry AE, Theobald D, Monteggia LM (2008) Selective loss of brain-derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy. Biol Psychiatry 63:642–649

    PubMed  CAS  Google Scholar 

  80. Chen B, Dowlatshahi D, MacQueen GM, Wang J-F, Young LT (2001) Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 50:260–265

    PubMed  CAS  Google Scholar 

  81. Altar CA, Whitehead RE, Chen R, Wörtwein G, Madsen TM (2003) Effects of electroconvulsive seizures and antidepressant drugs on brain-derived neurotrophic factor protein in rat brain. Biol Psychiatry 54:703–709

    PubMed  CAS  Google Scholar 

  82. Jacobsen JPR, Mørk A (2004) The effect of escitalopram, desipramine, electroconvulsive seizures and lithium on brain-derived neurotrophic factor mRNA and protein expression in the rat brain and the correlation to 5-HT and 5-HIAA levels. Brain Res 1024:183–192

    PubMed  CAS  Google Scholar 

  83. Balu DT, Hoshaw BA, Malberg JE, Rosenzweig-Lipson S, Schechter LE, Lucki I (2008) Differential regulation of central BDNF protein levels by antidepressant and non-antidepressant drug treatments. Brain Res 1211:37–43

    PubMed  CAS  Google Scholar 

  84. De Foubert G, Carney SL, Robinson CS, Destexhe EJ, Tomlinson R, Hicks CA, Murray TK, Gaillard JP, Deville C, Xhenseval V, Thomas CE, O’Neill MJ, Zetterström TSC (2004) Fluoxetine-induced change in rat brain expression of brain-derived neurotrophic factor varies depending on length of treatment. Neuroscience 128:597–604

    PubMed  Google Scholar 

  85. Xu H, Richardson JS, Li X-M (2003) Dose-related effects of chronic antidepressants on neuroprotective proteins BDNF, Bcl-2 and Cu/Zn-SOD in rat hippocampus. Neuropsychopharmacology 28:53–62

    PubMed  CAS  Google Scholar 

  86. Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294:1945–1948

    PubMed  CAS  Google Scholar 

  87. Teng HK, Teng KK, Lee R, Wright S, Tevar S, Almeida RD, Kermani P, Torkin R, Chen Z-Y, Lee FS, Kraemer RT, Nykjaer A, Hempstead BL (2005) ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci 25:5455–5463

    PubMed  CAS  Google Scholar 

  88. Woo NH, Teng HK, Siao C-J, Chiaruttini C, Pang PT, Milner TA, Hempstead BL, Lu B (2005) Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 8:1069–1077

    PubMed  CAS  Google Scholar 

  89. Gombos Z, Spiller A, Cottrell GA, Racine RJ, Burnham WM (1999) Mossy fiber sprouting induced by repeated electroconvulsive shock seizures. Brain Res 844:28–33

    PubMed  CAS  Google Scholar 

  90. Vaidya VA, Siuciak JA, Du F, Duman RS (1999) Hippocampal mossy fiber sprouting induced by chronic electroconvulsive seizures. Neuroscience 89:157–166

    PubMed  CAS  Google Scholar 

  91. Lamont SR, Paulls A, Stewart CA (2001) Repeated electroconvulsive stimulation, but not antidepressant drugs, induces mossy fibre sprouting in the rat hippocampus. Brain Res 893:53–58

    PubMed  CAS  Google Scholar 

  92. Pagnin D, de Queiroz V, Pini S, Cassano GB (2004) Efficacy of ECT in depression: a meta-analytic review. J ECT 20:13–20

    PubMed  Google Scholar 

  93. Tokarski K, Bijak M (1996) Antidepressant-induced adaptive changes in the effects of 5-HT, 5-HT1A and 5-HT4 agonists on the population spike recorded in hippocampal CA1 cells do not involve presynaptic effects on excitatory synaptic transmission. Pol J Pharmacol 48:565–573

    PubMed  CAS  Google Scholar 

  94. Bijak M, Tokarski K, Maj J (1997) Repeated treatment with antidepressant drugs induces subsensitivity to the excitatory effect of 5-HT4 receptor activation in the rat hippocampus. Naunyn Schmiedebergs Arch Pharmacol 355:14–19

    PubMed  CAS  Google Scholar 

  95. Stahl SM (1998) Mechanism of action of serotonin selective reuptake inhibitors. Serotonin receptors and pathways mediate therapeutic effects and side effects. J Affect Disord 51:215–235

    PubMed  CAS  Google Scholar 

  96. Vaswani M, Linda FK, Ramesh S (2003) Role of selective serotonin reuptake inhibitors in psychiatric disorders: a comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry 27:85–102

    PubMed  CAS  Google Scholar 

  97. Benmansour S, Cecchi M, Morilak DA, Gerhardt GA, Javors MA, Gould GG, Frazer A (1999) Effects of chronic antidepressant treatments on serotonin transporter function, density, and mRNA level. J Neurosci 19:10494–10501

    PubMed  CAS  Google Scholar 

  98. Benmansour S, Owens WA, Cecchi M, Morilak DA, Frazer A (2002) Serotonin clearance in vivo is altered to a greater extent by antidepressant-induced downregulation of the serotonin transporter than by acute blockade of this transporter. J Neurosci 22:6766–6772

    PubMed  CAS  Google Scholar 

  99. Miller BH, Schultz LE, Gulati A, Cameron MD, Pletcher MT (2008) Genetic regulation of behavioral and neuronal responses to fluoxetine. Neuropsychopharmacology 33:1312–1322

    PubMed  CAS  Google Scholar 

  100. Sillaber I, Panhuysen M, Henniger MSH, Ohl F, Kühne C, Pütz B, Pohl T, Deussing JM, Paez-Pereda M, Holsboer F (2008) Profiling of behavioral changes and hippocampal gene expression in mice chronically treated with the SSRI paroxetine. Psychopharmacology (Berl) 200:557–572

    CAS  Google Scholar 

  101. Ge S, Yang C-h, Hsu K-s, Ming G-l, Song H (2007) A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54:559–566

    PubMed  CAS  Google Scholar 

  102. Stewart CA, Reid IC (2000) Repeated ECS and fluoxetine administration have equivalent effects on hippocampal synaptic plasticity. Psychopharmacology (Berl) 148:217–223

    CAS  Google Scholar 

  103. Chan JP, Cordeira J, Calderon GA, Iyer LK, Rios M (2008) Depletion of central BDNF in mice impedes terminal differentiation of new granule neurons in the adult hippocampus. Mol Cell Neurosci 39:372–383

    PubMed  CAS  Google Scholar 

  104. Scharfman HE (1997) Hyperexcitability in combined entorhinal/hippocampal slices of adult rat after exposure to brain-derived neurotrophic factor. J Neurophysiol 78:1082–1095

    PubMed  CAS  Google Scholar 

  105. Kobayashi K, Ikeda Y, Sakai A, Suzuki H (2008) Chronic SSRI changes the maturation state of dentate granule cells. FENS Abstr 4:181.22

    Google Scholar 

  106. Weinberger DR (1999) Cell biology of the hippocampal formation in schizophrenia. Biol Psychiatry 45:395–402

    PubMed  CAS  Google Scholar 

  107. Harrison PJ (2004) The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology (Berl) 174:151–162

    CAS  Google Scholar 

  108. Bast T, Feldon J (2003) Hippocampal modulation of sensorimotor processes. Prog Neurobiol 70:319–345

    PubMed  CAS  Google Scholar 

  109. Joyce EM, Roiser JP (2007) Cognitive heterogeneity in schizophrenia. Curr Opin Psychiatry 20:268–272

    PubMed  Google Scholar 

  110. Turetsky BI, Calkins ME, Light GA, Olincy A, Radant AD, Swerdlow NR (2007) Neurophysiological endophenotypes of schizophrenia: the viability of selected candidate measures. Schizophr Bull 33:69–94

    PubMed  Google Scholar 

  111. Jeltsch H, Bertrand F, Lazarus C, Cassel J-C (2001) Cognitive performances and locomotor activity following dentate granule cell damage in rats: role of lesion extent and type of memory tested. Neurobiol Learn Mem 76:81–105

    PubMed  CAS  Google Scholar 

  112. Hernández-Rabaza V, Barcia JA, Llorens-Martín M, Trejo JL, Canales JJ (2007) Spared place and object-place learning but limited spatial working memory capacity in rats with selective lesions of the dentate gyrus. Brain Res Bull 72:315–323

    PubMed  Google Scholar 

  113. Benes FM, Khan Y, Vincent SL, Wickramasinghe R (1996) Differences in the subregional and cellular distribution of GABAA receptor binding in the hippocampal formation of schizophrenic brain. Synapse 22:338–349

    PubMed  CAS  Google Scholar 

  114. Klimek V, Rajkowska G, Luker SN, Dilley G, Meltzer HY, Overholser JC, Stockmeier CA, Ordway GA (1999) Brain noradrenergic receptors in major depression and schizophrenia. Neuropsychopharmacology 21:69–81

    PubMed  CAS  Google Scholar 

  115. Kerwin R, Patel S, Meldrum B (1990) Quantitative autoradiographic analysis of glutamate binding sites in the hippocampal formation in normal and schizophrenic brain post mortem. Neuroscience 39:25–32

    PubMed  CAS  Google Scholar 

  116. Eastwood SL, McDonald B, Burnet PWJ, Beckwith JP, Kerwin RW, Harrison PJ (1995) Decreased expression of mRNAs encoding non-NMDA glutamate receptors GluR1 and GluR2 in medial temporal lobe neurons in schizophrenia. Brain Res Mol Brain Res 29:211–223

    PubMed  CAS  Google Scholar 

  117. Porter RHP, Eastwood SL, Harrison PJ (1997) Distribution of kainate receptor subunit mRNAs in human hippocampus, neocortex and cerebellum, and bilateral reduction of hippocampal GluR6 and KA2 transcripts in schizophrenia. Brain Res 751:217–231

    PubMed  CAS  Google Scholar 

  118. Gao X-M, Sakai K, Roberts RC, Conley RR, Dean B, Tamminga CA (2000) Ionotropic glutamate receptors and expression of N-methyl-D-aspartate receptor subunits in subregions of human hippocampus: effects of schizophrenia. Am J Psychiatry 157:1141–1149

    PubMed  CAS  Google Scholar 

  119. Mizukami K, Sasaki M, Ishikawa M, Iwakiri M, Hidaka S, Shiraishi H, Iritani S (2000) Immunohistochemical localization of γ-aminobutyric acidB receptor in the hippocampus of subjects with schizophrenia. Neurosci Lett 283:101–104

    PubMed  CAS  Google Scholar 

  120. Law AJ, Deakin JFW (2001) Asymmetrical reductions of hippocampal NMDAR1 glutamate receptor mRNA in the psychoses. Neuroreport 12:2971–2974

    PubMed  CAS  Google Scholar 

  121. Freedman R, Hall M, Adler LE, Leonard S (1995) Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry 38:22–33

    PubMed  CAS  Google Scholar 

  122. Crook JM, Tomaskovic-Crook E, Copolov DL, Dean B (2000) Decreased muscarinic receptor binding in subjects with schizophrenia: a study of the human hippocampal formation. Biol Psychiatry 48:381–388

    PubMed  CAS  Google Scholar 

  123. Eastwood SL, Harrison PJ (1995) Decreased synaptophysin in the medial temporal lobe in schizophrenia demonstrated using immunoautoradiography. Neuroscience 69:339–343

    PubMed  CAS  Google Scholar 

  124. Young CE, Arima K, Xie J, Hu L, Beach TG, Falkai P, Honer WG (1998) SNAP-25 deficit and hippocampal connectivity in schizophrenia. Cereb Cortex 8:261–268

    PubMed  CAS  Google Scholar 

  125. Altar CA, Jurata LW, Charles V, Lemire A, Liu P, Bukhman Y, Young TA, Bullard J, Yokoe H, Webster MJ, Knable MB, Brockman JA (2005) Deficient hippocampal neuron expression of proteasome, ubiquitin, and mitochondrial genes in multiple schizophrenia cohorts. Biol Psychiatry 58:85–96

    PubMed  CAS  Google Scholar 

  126. Kolomeets NS, Orlovskaya DD, Rachmanova VI, Uranova NA (2005) Ultrastructural alterations in hippocampal mossy fiber synapses in schizophrenia: a postmortem morphometric study. Synapse 57:47–55

    PubMed  CAS  Google Scholar 

  127. Kolomeets NS, Orlovskaya DD, Uranova NA (2007) Decreased numerical density of CA3 hippocampal mossy fiber synapses in schizophrenia. Synapse 61:615–621

    PubMed  CAS  Google Scholar 

  128. Nowakowski C, Kaufmann WA, Adlassnig C, Maier H, Salimi K, Jellinger KA, Marksteiner J (2002) Reduction of chromogranin B-like immunoreactivity in distinct subregions of the hippocampus from individuals with schizophrenia. Schizophr Res 58:43–53

    PubMed  Google Scholar 

  129. Weickert CS, Rothmond DA, Hyde TM, Kleinman JE, Straub RE (2008) Reduced DTNBP1 (dysbindin-1) mRNA in the hippocampal formation of schizophrenia patients. Schizophr Res 98:105–110

    PubMed  Google Scholar 

  130. O’Tuathaigh CMP, Babovic D, O’Meara G, Clifford JJ, Croke DT, Waddington JL (2007) Susceptibility genes for schizophrenia: characterisation of mutant mouse models at the level of phenotypic behaviour. Neurosci Biobehav Rev 31:60–78

    PubMed  Google Scholar 

  131. Takao K, Toyama K, Nakanishi K, Hattori S, Takamura H, Takeda M, Miyakawa T, Hashimoto R (2008) Impaired long-term memory retention and working memory in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia. Mol Brain 1:11

    PubMed  Google Scholar 

  132. Numakawa T, Yagasaki Y, Ishimoto T, Okada T, Suzuki T, Iwata N, Ozaki N, Taguchi T, Tatsumi M, Kamijima K, Straub RE, Weinberger DR, Kunugi H, Hashimoto R (2004) Evidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia. Hum Mol Genet 13:2699–2708

    PubMed  CAS  Google Scholar 

  133. Chen X-W, Feng Y-Q, Hao C-J, Guo X-L, He X, Zhou Z-Y, Guo N, Huang H-P, Xiong W, Zheng H, Zuo P-L, Zhang CX, Li W, Zhou Z (2008) DTNBP1, a schizophrenia susceptibility gene, affects kinetics of transmitter release. J Cell Biol 181:791–801

    PubMed  CAS  Google Scholar 

  134. Benson MA, Newey SE, Martin-Rendon E, Hawkes R, Blake DJ (2001) Dysbindin, a novel coiled-coil-containing protein that interacts with the dystrobrevins in muscle and brain. J Biol Chem 276:24232–24241

    PubMed  CAS  Google Scholar 

  135. Talbot K, Eidem WL, Tinsley CL, Benson MA, Thompson EW, Smith RJ, Hahn C-G, Siegel SJ, Trojanowski JQ, Gur RE, Blake DJ, Arnold SE (2004) Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. J Clin Invest 113:1353–1363

    PubMed  CAS  Google Scholar 

  136. Fatemi SH, Earle JA, McMenomy T (2000) Reduction in Reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol Psychiatry 5:654–663

    PubMed  CAS  Google Scholar 

  137. Eastwood SL, Harrison PJ (2006) Cellular basis of reduced cortical reelin expression in schizophrenia. Am J Psychiatry 163:540–542

    PubMed  Google Scholar 

  138. Rioux L, Arnold SE (2005) The expression of retinoic acid receptor alpha is increased in the granule cells of the dentate gyrus in schizophrenia. Psychiatry Res 133:13–21

    PubMed  CAS  Google Scholar 

  139. Arnold SE, Talbot K, Hahn C-G (2005) Neurodevelopment, neuroplasticity, and new genes for schizophrenia. Prog Brain Res 147:319–345

    PubMed  CAS  Google Scholar 

  140. Kamnasaran D, Muir WJ, Ferguson-Smith MA, Cox DW (2003) Disruption of the neuronal PAS3 gene in a family affected with schizophrenia. J Med Genet 40:325–332

    PubMed  CAS  Google Scholar 

  141. Erbel-Sieler C, Dudley C, Zhou Y, Wu X, Estill SJ, Han T, Diaz-Arrastia R, Brunskill EW, Potter SS, McKnight SL (2004) Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors. Proc Natl Acad Sci USA 101:13648–13653

    PubMed  CAS  Google Scholar 

  142. Pieper AA, Wu X, Han TW, Estill SJ, Dang Q, Wu LC, Reece-Fincanon S, Dudley CA, Richardson JA, Brat DJ, McKnight SL (2005) The neuronal PAS domain protein 3 transcription factor controls FGF-mediated adult hippocampal neurogenesis in mice. Proc Natl Acad Sci USA 102:14052–14057

    PubMed  CAS  Google Scholar 

  143. Meyer KD, Morris JA (2008) Immunohistochemical analysis of Disc1 expression in the developing and adult hippocampus. Gene Expr Patterns 8:494–501

    PubMed  CAS  Google Scholar 

  144. Austin CP, Ky B, Ma L, Morris JA, Shughrue PJ (2004) Expression of Disrupted-In-Schizophrenia-1, a schizophrenia-associated gene, is prominent in the mouse hippocampus throughout brain development. Neuroscience 124:3–10

    PubMed  CAS  Google Scholar 

  145. Miyoshi K, Honda A, Baba K, Taniguchi M, Oono K, Fujita T, Kuroda S, Katayama T, Tohyama M (2003) Disrupted-In-Schizophrenia 1, a candidate gene for schizophrenia, participates in neurite outgrowth. Mol Psychiatry 8:685–694

    PubMed  CAS  Google Scholar 

  146. Austin CP, Ma L, Ky B, Morris JA, Shughrue PJ (2003) DISC1 (Disrupted in Schizophrenia-1) is expressed in limbic regions of the primate brain. Neuroreport 14:951–954

    PubMed  CAS  Google Scholar 

  147. James R, Adams RR, Christie S, Buchanan SR, Porteous DJ, Millar JK (2004) Disrupted in Schizophrenia 1 (DISC1) is a multicompartmentalized protein that predominantly localizes to mitochondria. Mol Cell Neurosci 26:112–122

    PubMed  CAS  Google Scholar 

  148. Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y, Liu X-b, Yang C-H, Jordan JD, Ma DK, Liu CY, Ganesan S, Cheng H-J, Ming G-l, Lu B, Song H (2007) Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 130:1146–1158

    PubMed  CAS  Google Scholar 

  149. Lauer M, Beckmann H, Senitz D (2003) Increased frequency of dentate granule cells with basal dendrites in the hippocampal formation of schizophrenics. Psychiatry Res 122:89–97

    PubMed  Google Scholar 

  150. Faulkner RL, Jang M-H, Liu X-B, Duan X, Sailor KA, Kim JY, Ge S, Jones EG, Ming G-l, Song H, Cheng H-J (2008) Development of hippocampal mossy fiber synaptic outputs by new neurons in the adult brain. Proc Natl Acad Sci USA 105:14157–14162

    PubMed  CAS  Google Scholar 

  151. Kvajo M, McKellar H, Arguello PA, Drew LJ, Moore H, MacDermott AB, Karayiorgou M, Gogos JA (2008) A mutation in mouse Disc1 that models a schizophrenia risk allele leads to specific alterations in neuronal architecture and cognition. Proc Natl Acad Sci USA 105:7076–7081

    PubMed  CAS  Google Scholar 

  152. Contractor A, Swanson G, Heinemann SF (2001) Kainate receptors are involved in short- and long-term plasticity at mossy fiber synapses in the hippocampus. Neuron 29:209–216

    PubMed  CAS  Google Scholar 

  153. Breustedt J, Schmitz D (2004) Assessing the role of GLUK5 and GLUK6 at hippocampal mossy fiber synapses. J Neurosci 24:10093–10098

    PubMed  CAS  Google Scholar 

  154. Shaltiel G, Maeng S, Malkesman O, Pearson B, Schloesser RJ, Tragon T, Rogawski M, Gasior M, Luckenbaugh D, Chen G, Manji HK (2008) Evidence for the involvement of the kainate receptor subunit GluR6 (GRIK2) in mediating behavioral displays related to behavioral symptoms of mania. Mol Psychiatry 13:858–872

    PubMed  CAS  Google Scholar 

  155. Seress L, Mrzljak L (1987) Basal dendrites of granule cells are normal features of the fetal and adult dentate gyrus of both monkey and human hippocampal formations. Brain Res 405:169–174

    PubMed  CAS  Google Scholar 

  156. Blaabjerg M, Zimmer J (2007) The dentate mossy fibers: structural organization, development and plasticity. Prog Brain Res 163:85–107

    PubMed  Google Scholar 

  157. Urban NN, Henze DA, Lewis DA, Barrionuevo G (1996) Properties of LTP induction in the CA3 region of the primate hippocampus. Learn Mem 3:86–95

    PubMed  CAS  Google Scholar 

  158. St John JL, Rosene DL, Luebke JI (1997) Morphology and electrophysiology of dentate granule cells in the rhesus monkey: comparison with the rat. J Comp Neurol 387:136–147

    PubMed  CAS  Google Scholar 

  159. Ariwodola OJ, Crowder TL, Grant KA, Daunais JB, Friedman DP, Weiner JL (2003) Ethanol modulation of excitatory and inhibitory synaptic transmission in rat and monkey dentate granule neurons. Alcohol Clin Exp Res 27:1632–1639

    PubMed  CAS  Google Scholar 

  160. Bai O, Chlan-Fourney J, Bowen R, Keegan D, Li X-M (2003) Expression of brain-derived neurotrophic factor mRNA in rat hippocampus after treatment with antipsychotic drugs. J Neurosci Res 71:127–131

    PubMed  CAS  Google Scholar 

  161. Barr AM, Young CE, Phillips AG, Honer WG (2006) Selective effects of typical antipsychotic drugs on SNAP-25 and synaptophysin in the hippocampal trisynaptic pathway. Int J Neuropsychopharmacol 9:457–463

    PubMed  CAS  Google Scholar 

  162. Newton SS, Duman RS (2007) Neurogenic actions of atypical antipsychotic drugs and therapeutic implications. CNS Drugs 21:715–725

    PubMed  CAS  Google Scholar 

  163. Halim ND, Weickert CS, McClintock BW, Weinberger DR, Lipska BK (2004) Effects of chronic haloperidol and clozapine treatment on neurogenesis in the adult rat hippocampus. Neuropsychopharmacology 29:1063–1069

    PubMed  CAS  Google Scholar 

  164. Kodama M, Fujioka T, Duman RS (2004) Chronic olanzapine or fluoxetine administration increases cell proliferation in hippocampus and prefrontal cortex of adult rat. Biol Psychiatry 56:570–580

    PubMed  CAS  Google Scholar 

  165. Schmitt A, Weber S, Jatzko A, Braus DF, Henn FA (2004) Hippocampal volume and cell proliferation after acute and chronic clozapine or haloperidol treatment. J Neural Transm 111:91–100

    PubMed  CAS  Google Scholar 

  166. Green W, Patil P, Marsden CA, Bennett GW, Wigmore PM (2006) Treatment with olanzapine increases cell proliferation in the subventricular zone and prefrontal cortex. Brain Res 1070:242–245

    PubMed  CAS  Google Scholar 

  167. Wakade CG, Mahadik SP, Waller JL, Chiu F-c (2002) Atypical neuroleptics stimulate neurogenesis in adult rat brain. J Neurosci Res 69:72–79

    PubMed  CAS  Google Scholar 

  168. Wang H-D, Dunnavant FD, Jarman T, Deutch AY (2004) Effects of antipsychotic drugs on neurogenesis in the forebrain of the adult rat. Neuropsychopharmacology 29:1230–1238

    PubMed  CAS  Google Scholar 

  169. Kippin TE, Kapur S, van der Kooy D (2005) Dopamine specifically inhibits forebrain neural stem cell proliferation, suggesting a novel effect of antipsychotic drugs. J Neurosci 25:5815–5823

    PubMed  CAS  Google Scholar 

  170. Dawirs RR, Hildebrandt K, Teuchert-Noodt G (1998) Adult treatment with haloperidol increases dentate granule cell proliferation in the gerbil hippocampus. J Neural Transm 105:317–327

    PubMed  CAS  Google Scholar 

  171. Möller H-J (2003) Management of the negative symptoms of schizophrenia: new treatment options. CNS Drugs 17:793–823

    PubMed  Google Scholar 

  172. Strange PG (2001) Antipsychotic drugs: importance of dopamine receptors for mechanisms of therapeutic actions and side effects. Pharmacol Rev 53:119–133

    PubMed  CAS  Google Scholar 

  173. Hiramoto T, Kanda Y, Satoh Y, Takishima K, Watanabe Y (2007) Dopamine D2 receptor stimulation promotes the proliferation of neural progenitor cells in adult mouse hippocampus. Neuroreport 18:659–664

    PubMed  CAS  Google Scholar 

  174. Yang P, Arnold SA, Habas A, Hetman M, Hagg T (2008) Ciliary neurotrophic factor mediates dopamine D2 receptor-induced CNS neurogenesis in adult mice. J Neurosci 28:2231–2241

    PubMed  CAS  Google Scholar 

  175. Müller N, Schwarz M (2006) Schizophrenia as an inflammation-mediated dysbalance of glutamatergic neurotransmission. Neurotox Res 10:131–148

    Article  PubMed  Google Scholar 

  176. Cartmell J, Monn JA, Schoepp DD (1999) The metabotropic glutamate 2/3 receptor agonists LY354740 and LY379268 selectively attenuate phencyclidine versus d-amphetamine motor behaviors in rats. J Pharmacol Exp Ther 291:161–170

    PubMed  CAS  Google Scholar 

  177. Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, Avedisova AS, Bardenstein LM, Gurovich IY, Morozova MA, Mosolov SN, Neznanov NG, Reznik AM, Smulevich AB, Tochilov VA, Johnson BG, Monn JA, Schoepp DD (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med 13:1102–1107

    PubMed  CAS  Google Scholar 

  178. Kamiya H, Shinozaki H, Yamamoto C (1996) Activation of metabotropic glutamate receptor type 2/3 suppresses transmission at rat hippocampal mossy fibre synapses. J Physiol 493:447–455

    PubMed  CAS  Google Scholar 

  179. Macek TA, Winder DG, Gereau RW IV, Ladd CO, Conn PJ (1996) Differential involvement of group II and group III mGluRs as autoreceptors at lateral and medial perforant path synapses. J Neurophysiol 76:3798–3806

    PubMed  CAS  Google Scholar 

  180. Olincy A, Stevens KE (2007) Treating schizophrenia symptoms with an alpha7 nicotinic agonist, from mice to men. Biochem Pharmacol 74:1192–1201

    PubMed  CAS  Google Scholar 

  181. Freedman R, Olincy A, Buchanan RW, Harris JG, Gold JM, Johnson L, Allensworth D, Guzman-Bonilla A, Clement B, Ball MP, Kutnick J, Pender V, Martin LF, Stevens KE, Wagner BD, Zerbe GO, Soti F, Kem WR (2008) Initial phase 2 trial of a nicotinic agonist in schizophrenia. Am J Psychiatry 165:1040–1047

    PubMed  Google Scholar 

  182. Leonard S, Freedman R (2006) Genetics of chromosome 15q13-q14 in schizophrenia. Biol Psychiatry 60:115–122

    PubMed  CAS  Google Scholar 

  183. Breese CR, Adams C, Logel J, Drebing C, Rollins Y, Barnhart M, Sullivan B, Demasters BK, Freedman R, Leonard S (1997) Comparison of the regional expression of nicotinic acetylcholine receptor α7 mRNA and [125I]- α-bungarotoxin binding in human postmortem brain. J Comp Neurol 387:385–398

    PubMed  CAS  Google Scholar 

  184. Young JW, Crawford N, Kelly JS, Kerr LE, Marston HM, Spratt C, Finlayson K, Sharkey J (2007) Impaired attention is central to the cognitive deficits observed in alpha 7 deficient mice. Eur Neuropsychopharmacol 17:145–155

    PubMed  CAS  Google Scholar 

  185. Fernandes C, Hoyle E, Dempster E, Schalkwyk LC, Collier DA (2006) Performance deficit of α7 nicotinic receptor knockout mice in a delayed matching-to-place task suggests a mild impairment of working/episodic-like memory. Genes Brain Behav 5:433–440

    PubMed  CAS  Google Scholar 

  186. Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA (1996) Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 383:713–716

    PubMed  CAS  Google Scholar 

  187. Sharma G, Vijayaraghavan S (2003) Modulation of presynaptic store calcium induces release of glutamate and postsynaptic firing. Neuron 38:929–939

    PubMed  CAS  Google Scholar 

  188. Sharma G, Grybko M, Vijayaraghavan S (2008) Action potential-independent and nicotinic receptor-mediated concerted release of multiple quanta at hippocampal CA3-mossy fiber synapses. J Neurosci 28:2563–2575

    PubMed  CAS  Google Scholar 

  189. Vogt KE, Regehr WG (2001) Cholinergic modulation of excitatory synaptic transmission in the CA3 area of the hippocampus. J Neurosci 21:75–83

    PubMed  CAS  Google Scholar 

  190. van Neerven S, Kampmann E, Mey J (2008) RAR/RXR and PPAR/RXR signaling in neurological and psychiatric diseases. Prog Neurobiol 85:433–451

    PubMed  Google Scholar 

  191. Webster MJ, Knable MB, O’Grady J, Orthmann J, Weickert CS (2002) Regional specificity of brain glucocorticoid receptor mRNA alterations in subjects with schizophrenia and mood disorders. Mol Psychiatry 7:985–994

    PubMed  CAS  Google Scholar 

  192. Perlman WR, Tomaskovic-Crook E, Montague DM, Webster MJ, Rubinow DR, Kleinman JE, Weickert CS (2005) Alteration in estrogen receptor α mRNA levels in frontal cortex and hippocampus of patients with major mental illness. Biol Psychiatry 58:812–824

    PubMed  CAS  Google Scholar 

  193. Barbeau D, Liang JJ, Robitalille Y, Quirion R, Srivastava LK (1995) Decreased expression of the embryonic form of the neural cell adhesion molecule in schizophrenic brains. Proc Natl Acad Sci USA 92:2785–2789

    PubMed  CAS  Google Scholar 

  194. Dean B, Opeskin K, Pavey G, Hill C, Keks N (1997) Changes in protein kinase C and adenylate cyclase in the temporal lobe from subjects with schizophrenia. J Neural Transm 104:1371–1381

    PubMed  CAS  Google Scholar 

  195. Tian SY, Wang J-F, Bezchlibnyk YB, Young LT (2007) Immunoreactivity of 43 kDa growth-associated protein is decreased in post mortem hippocampus of bipolar disorder and schizophrenia. Neurosci Lett 411:123–127

    PubMed  CAS  Google Scholar 

  196. Goldsmith SK, Joyce JN (1995) Alterations in hippocampal mossy fiber pathway in schizophrenia and Alzheimer’s disease. Biol Psychiatry 37:122–126

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank Drs. Hidenori Suzuki and Tsuyoshi Miyakawa for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsunori Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, K. Targeting the Hippocampal Mossy Fiber Synapse for the Treatment of Psychiatric Disorders. Mol Neurobiol 39, 24–36 (2009). https://doi.org/10.1007/s12035-008-8049-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-008-8049-5

Keywords

Navigation