Skip to main content
Log in

On and Around Microtubules: An Overview

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Microtubules are hollow tubes some 25 nm in diameter participating in the eukaryotic cytoskeleton. They are built from αβ-tubulin heterodimers that associate to form protofilaments running lengthwise along the microtubule wall with the β-tubulin subunit facing the microtubule plus end conferring a structural polarity. The α- and β-tubulins are highly conserved. A third member of the tubulin family, γ-tubulin, plays a role in microtubule nucleation and assembly. Other members of the tubulin family appear to be involved in microtubule nucleation. Microtubule assembly is accompanied by hydrolysis of GTP associated with β-tubulin so that microtubules consist principally of ‘GDP-tubulin’ stabilized at the plus end by a short ‘cap’. An important property of microtubules is dynamic instability characterized by growth randomly interrupted by pauses and shrinkage. Many proteins interact with microtubules within the cell and are involved in essential functions such as microtubule growth, stabilization, destabilization, and interactions with chromosomes during cell division. The motor proteins kinesin and dynein use microtubules as pathways for transport and are also involved in cell division. Crystallography and electron microscopy are providing a structural basis for understanding the interactions of microtubules with antimitotic drugs, with motor proteins and with plus end tracking proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baldauf, S. L., Roger, A. J., Wenk-Siefert, I., & Doolittle, W. F. (2000). A kingdom level phylogeny of eukaryotes based on combined protein data. Science, 290, 972–977.

    Article  CAS  Google Scholar 

  2. Luduena, R. F. (1998). Multiple forms of tubulin: Different gene products and covalent modifications. International Review of Cytology, 178, 207–275.

    Article  CAS  Google Scholar 

  3. Dutcher, S. K. (2003). Long-lost relatives reappear: Identification of new members of the tubulin superfamily. Current Opinion in Microbiology, 6, 634–640.

    Article  CAS  Google Scholar 

  4. Wilson, P. G., & Borisy, G. G. (1997). Evolution of the multi-tubulin hypothesis. BioEssays, 19, 451–454.

    Article  CAS  Google Scholar 

  5. McKean, P. G., Vaughan, S., & Gull, K. (2001). The extended tubulin superfamily. Journal of Cell Science, 114, 2723–2733.

    CAS  Google Scholar 

  6. Savage, C., & Chalfie, M. (1991). Genetic aspects of microtubule biology in the nematode Caenorhabditis elegans. Cell Motility and the Cytoskeleton, 18, 159–163.

    Article  CAS  Google Scholar 

  7. Fukushiga, T., Siddiqui, Z. K., Chou, M., Culotti, J. G., Gogonea, C. B., Siddiqui, S. S., et al. (1999). Mec-12, an α-tubulin required for touch sensitivity in C. elegans. Journal of Cell Science, 112, 395–403.

    Google Scholar 

  8. Verhey, K. J., & Gaertig, J. (2007). The tubulin code. Cell Cycle, 6, 2152–2160.

    CAS  Google Scholar 

  9. Hammond, J. W., Cai, D., & Verhey, K. J. (2008). Tubulin modifications and their cellular functions. Current Opinion in Cell Biology, 20, 71–76.

    Article  CAS  Google Scholar 

  10. Fukushima, N., Furuta, D., Hidaka, Y., Moriyama, R., & Tsujiuchi, T. (2009). Posttranslational modifications of tubulin in the nervous system. Journal of Neurochemistry, 109, 683–693.

    Article  CAS  Google Scholar 

  11. Oakely, C. E., & Oakely, B. R. (1989). Identification of γ-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature, 338, 662–664.

    Article  Google Scholar 

  12. Oakely, B. R. (1992). γ-tubulin: The microtubule organiser? Trends in Cell Biology, 2, 1–5.

    Article  Google Scholar 

  13. Kollman, J. M., Zelter, A., Muller, E. G., Fox, B., Rice, L. M., Davis, T. N., et al. (2008). The structure of the gamma-tubulin small complex: Implications of its architecture and flexibility for microtubule nucleation. Molecular Biology of the Cell, 19, 207–215.

    Article  CAS  Google Scholar 

  14. Moritz, M., & Agard, D. A. (2001). Gamma-tubulin complexes and microtubule nucleation. Current Opinion in Structural Biology, 11, 174–181.

    Article  CAS  Google Scholar 

  15. Dictenberg, J. B., Zimmerman, W., Sparks, C. A., Young, A., Vidair, C., Zheng, Y., et al. (1998). Pericentrin and γ-tubulin form a protein complex and are organised into a novel lattice at the centrosome. Journal of Cell Biology, 141, 163–174.

    Article  CAS  Google Scholar 

  16. Zimmerman, W. C., Sillibourne, J., Rosa, J., & Doxsey, S. J. (2004). Mitosis-specific anchoring of gamma tubulin complexes by pericentrin controls spindle organization and mitotic entry. Molecular Biology of the Cell, 15, 3642–3657.

    Article  CAS  Google Scholar 

  17. Goehring, N. W., & Beckwith, J. (2005). Diverse paths to midcell: Assembly of the bacterial cell division machinery. Current Biology, 15, R514–R526.

    Article  CAS  Google Scholar 

  18. Erickson, H. P. (1997). FtsZ, a tubulin homologue in prokaryote cell division. Trends in Cell Biology, 7, 362–370.

    Article  CAS  Google Scholar 

  19. Löwe, J., & Amos, L. A. (1998). Crystal structure of the bacterial cell division protein FtsZ. Nature, 391, 203–206.

    Article  Google Scholar 

  20. Nogales, E., Downing, K. H., Amos, L. A., & Löwe, J. (1998). Tubulin and FtsZ form a distinct family of GTPases. Nature Structural Biology, 5, 451–458.

    Article  CAS  Google Scholar 

  21. Oliva, M. A., Cordell, S. C., & Lowe, J. (2004). Structural insights into FtsZ protofilament formation. Nature Structural & Molecular Biology, 11, 1243–1250.

    Article  CAS  Google Scholar 

  22. Haydon, D. J., Stokes, N. R., Ure, R., Galbraith, G., Bennett, J. M., Brown, D. R., et al. (2008). An inhibitor of FtsZ with potent and selective anti-staphylococcal activity. Science, 321, 1673–1675.

    Article  CAS  Google Scholar 

  23. Huang, Q., Tonge, P. J., Slayden, R. A., Kirikae, T., & Ojima, I. (2007). FtsZ: A novel target for tuberculosis drug discovery. Current Topics in Medicinal Chemistry, 7, 527–543.

    Article  CAS  Google Scholar 

  24. Jenkins, C., Samudrala, R., Anderson, I., Hedlund, B. P., Petroni, G., Michailova, N., et al. (2002). Genes for the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter. Proceedings of the National Academy of Sciences of the United States of America, 99, 17049–17054.

    Article  CAS  Google Scholar 

  25. Sontag, C. A., Staley, J. T., & Erickson, H. P. (2005). In vitro assembly and GTP hydrolysis by bacterial tubulins BtubA and BtubB. Journal of Cell Biology, 169, 233–238.

    Article  CAS  Google Scholar 

  26. Pilhofer, M., Rosati, G., Ludwig, W., Schliefer, K.-H., & Petroni, G. (2007). Coexistence of tubulins and FtsZ in different Prosthecobacter species. Molecular Biology and Evolution, 24, 1439–1442.

    Article  CAS  Google Scholar 

  27. Schlieper, D., Oliva, M. A., Andreu, J. M., & Löwe, J. (2005). Structure of bacterial tubulin BtubA/B: evidence for horizontal gene transfer. Proceedings of the National Academy of Sciences of the United States of America, 102, 9170–9175.

    Article  CAS  Google Scholar 

  28. Asnes, C. F., & Wilson, L. (1979). Isolation of bovine brain microtubule proteins without glycerol: Polymerisation kinetics change during purification cycles. Analytical Biochemistry, 98, 64–73.

    Article  CAS  Google Scholar 

  29. Carlier, M.-F. (1991). Nucleotide hydrolysis in cytoskeletal assembly. Current Opinion in Cell Biology, 3, 12–17.

    Article  CAS  Google Scholar 

  30. Caplow, M. (1992). Microtubule dynamics. Current Opinion in Cell Biology, 4, 58–65.

    Article  CAS  Google Scholar 

  31. Chrétien, D., Fuller, S. D., & Karsenti, E. (1995). Structure of growing microtubule ends: Two-dimensional sheets close into tubes at variable rates. Journal of Cell Biology, 129, 1311–1328.

    Article  Google Scholar 

  32. Aldaz, H., Rice, L. M., & Agard, D. A. (2005). Insights into microtubule nucleation from the crystal structure of human γ-tubulin. Nature, 435, 523–527.

    Article  CAS  Google Scholar 

  33. Rice, L. M., Montabana, E. A., & Agard, D. A. (2008). The lattice as allosteric effector: structural studies of alpha- beta- and gamma-tubulin clarify the role of GTP in microtubule assembly. Proceedings of the National Academy of Sciences of the United States of America, 105, 5378–5383.

    Article  CAS  Google Scholar 

  34. Dimitrov, A., Quesnoit, M., Moutel, S., Cantaloube, I., Poüs, C., & Perez, F. (2008). Detection of GTP-tubulin conformation in vivo reveals a role for GTP remnants in microtubule rescues. Science, 322, 1353–1356.

    Article  CAS  Google Scholar 

  35. Hyman, A. A., Salser, S., Drechsel, D. N., Unwin, N., & Mitchison, T. J. (1992). Role of GTP hydrolysis in microtubule dynamics: Information from a slowly hydrolyzable analogue, GMPCPP. Molecular Biology of the Cell, 3, 1155–1167.

    CAS  Google Scholar 

  36. Mandelkow, E.-M., Mandelkow, E., & Milligan, R. A. (1991). Microtubule dynamics and microtubule caps: A time-resolved cryo-electron microscopy study. Journal of Cell Biology, 114, 977–991.

    Article  CAS  Google Scholar 

  37. Melki, R., Carlier, M.-F., Pantaloni, D., & Timasheff, S. N. (1989). Cold depolymerization of microtubules to double rings: Geometric stabilization of assemblies. Biochemistry, 28, 9143–9152.

    Article  CAS  Google Scholar 

  38. Horio, T., & Hotani, H. (1986). Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature, 321, 605–607.

    Article  CAS  Google Scholar 

  39. Mitchison, T., & Kirschner, M. (1984). Dynamic instability of microtubule growth. Nature, 312, 237–242.

    Article  CAS  Google Scholar 

  40. O’Connell, C. B., & Khodjakov, A. L. (2007). Cooperative mechanisms of mitotic spindle formation. Journal of Cell Science, 120, 1717–1722.

    Article  CAS  Google Scholar 

  41. Severin, F. F., Sorger, P. K., & Hyman, A. A. (1997). Kinetochores distinguish GTP from GDP forms of the microtubule lattice. Nature, 388, 888–891.

    Article  CAS  Google Scholar 

  42. Amos, L. A., & Klug, A. (1974). Arrangement of subunits in flagellar microtubules. Journal of Cell Science, 14, 523–549.

    CAS  Google Scholar 

  43. Raff, E. C., Fackenthal, J. D., Hutchens, J. A., Hoyle, H. D., & Turner, F. R. (1997). Microtubule architecture specified by a β-tubulin isoform. Science, 275, 70–73.

    Article  CAS  Google Scholar 

  44. Chrétien, D., & Wade, R. H. (1991). New data on the microtubule surface lattice. Biology of the Cell, 71, 161–174.

    Article  Google Scholar 

  45. Meurer-Grob, P., Kasparian, J., & Wade, R. H. (2001). Microtubule structure at improved resolution. Biochemistry, 40, 8000–8008.

    Article  CAS  Google Scholar 

  46. Mitchison, T. J. (1993). Localisation of an exchangeable GTP binding site at the plus end of microtubules. Science, 261, 1044–1047.

    Article  CAS  Google Scholar 

  47. Hirose, K., Fan, J., & Amos, L. A. (1995). Re-examination of the polarity of microtubules and sheets decorated with kinesin motor domain. Journal of Molecular Biology, 251, 329–333.

    Article  CAS  Google Scholar 

  48. Fan, J., Griffith, A. D., Lockhart, A., & Cross, R. A. (1996). Microtubule minus ends can be labelled with a phage display antibody specific to alpha-tubulin. Journal of Molecular Biology, 259, 325–330.

    Article  CAS  Google Scholar 

  49. Song, Y.-H., & Mandelkow, E. (1993). Recombinant kinesin motor domain binds to beta-tubulin and decorates microtubules with a B surface lattice. Proceedings of the National Academy of Sciences of the United States of America, 90, 1671–1675.

    Article  CAS  Google Scholar 

  50. Metoz, F., Arnal, I., & Wade, R. H. (1997). Tomography without tilt: Three-dimensional imaging of microtubule-motor complexes. Journal of Structural Biology, 118, 159–168.

    Article  CAS  Google Scholar 

  51. Wade, R. H., & Hyman, A. A. (1997). Microtubule structure and dynamics. Current Opinion in Cell Biology, 9, 12–17.

    Article  CAS  Google Scholar 

  52. Nogales, E., Wolf, S. G., & Downing, K. A. (1998). Structure of the αβ-tubulin dimer by electron crystallography. Nature, 391, 199–203.

    Article  CAS  Google Scholar 

  53. Gigant, B., Curmi, P. A., Martin-Barbey, C., Charbaut, E., Lachkar, S., Lebeau, L., et al. (2000). The 4 Å X-ray structure of a tubulin:stathmin-like domain complex. Cell, 102, 809–816.

    Article  CAS  Google Scholar 

  54. Ravelli, R. B. G., Gigant, B., Curmi, P. A., Jourdain, I., Lachkar, S., Sobel, A., et al. (2004). Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature, 428, 198–202.

    Article  CAS  Google Scholar 

  55. Gigant, B., Wang, C., Ravelli, R. B. G., Roussi, F., Steinmetz, M. O., Curmi, P. A., et al. (2005). Structural basis for the regulation of tubulin by vinblastine. Nature, 435, 519–522.

    Article  CAS  Google Scholar 

  56. Li, H., DeRosier, D. J., Nicholson, W. V., Nogales, E., & Downing, K. H. (2002). Microtubule structure at 8 Å resolution. Structure, 10, 1317–1328.

    Article  CAS  Google Scholar 

  57. Nogales, E., Whittaker, M., Milligan, R. A., & Downing, K. H. (1999). High resolution model of the microtubule. Cell, 96, 79–88.

    Article  CAS  Google Scholar 

  58. Heinz, D. W., Schubert, W.-D., & Höfle, G. (2005). Much anticipated—the bioactive conformation of epothilone and its binding to tubulin. Angewandte Chemie (International ed. in English), 44, 1298–1301.

    Article  CAS  Google Scholar 

  59. Nettles, J. H., Li, H., Cornett, B., Krahn, J. M., Snyder, J. P., & Downing, K. H. (2004). The binding mode of epothiline A on αβ-tubulin by electron crystallography. Science, 305, 866–869.

    Article  CAS  Google Scholar 

  60. Hyman, A. A., Chrétien, D., Arnal, I., & Wade, R. H. (1995). Structural changes accompanying GTP hydrolysis in microtubules: Information from a slowly hydrolyzable analogue guanylyl-(a, b)-methylene-diphosphonate. Journal of Cell Biology, 128, 117–125.

    Article  CAS  Google Scholar 

  61. Arnal, I., & Wade, R. H. (1995). How does taxol stabilize microtubules? Current Biology, 5, 900–905.

    Article  CAS  Google Scholar 

  62. Elie-Caille, C., Severin, F., Helenius, J., Howard, J., Muller, D. J., & Hyman, A. A. (2007). Straight GDP-tubulin protofilaments form in the presence of taxol. Current Biology, 17, 1–6.

    Article  CAS  Google Scholar 

  63. Ozon, S., Maucauer, A., & Sobel, A. (1997). The stathmin family—molecular and biological characterisation of novel mammalian proteins expressed in the nervous system. European Journal of Biochemistry, 248, 794–806.

    Article  CAS  Google Scholar 

  64. Wood, K. W., Cornwell, W. D., & Jackson, J. R. (2001). Past and future of the mitotic spindle as an oncology target. Current Opinion in Pharmacology, 1, 370–377.

    Article  CAS  Google Scholar 

  65. Fojo, T., & Menefee, M. (2007). Mechanisms of multidrug resistance: The potential role of microtubule stabilizing agents. Annals of Oncology, 18(Suppl 5), 3–8.

    Article  Google Scholar 

  66. Morris, P. G., & Fornier, M. N. (2009). Novel anti-tubulin cytotoxic agents for breast cancer. Expert Review of Anticancer Therapy, 9, 175–185.

    Article  CAS  Google Scholar 

  67. Kellogg, D. R., Field, C. M., & Alberts, B. M. (1989). Identification of microtubule-associated proteins in the centrosome, spindle, and kinetochore of the early Drosophila embryo. Cell Biology, 109, 2977–2991.

    Article  CAS  Google Scholar 

  68. Sauer, G., Körner, R., Hanisch, A., Ries, A., Nigg, E. A., & Silljé, H. H. W. (2005). Proteome analysis of the human mitotic spindle. Molecular and Cellular Proteomics, 4, 35–43.

    Article  CAS  Google Scholar 

  69. Hughes, J. R., Meireles, A. M., Fisher, K. H., Garcia, A., Antrobus, P. R., Wainman, A., et al. (2008). A microtubule interactome: Complexes with roles in cell cycle and mitosis. PLoS Biology, 6, e98.

    Article  CAS  Google Scholar 

  70. Dehmelt, L., & Halpain, S. (2004). The MAP2/tau family of microtubules associated proteins. General Biology, 6, 204.

    Article  Google Scholar 

  71. Baas, P. W., & Qiang, L. (2005). Neuronal microtubules: When the MAP is the roadblock. Trends in Cell Biology, 15, 183–187.

    Article  CAS  Google Scholar 

  72. Al-Bassam, J., Ozer, R. S., Safer, D., Halpain, S., & Milligan, R. A. (2002). MAP2 and tau bind longitudinally along the outer ridges of microtubule protofilaments. Journal of Cell Biology, 157, 1187–1196.

    Article  CAS  Google Scholar 

  73. Dixit, R., Ross, J. L., Golman, Y. E., & Holzbaur, E. L. F. (2008). Differential regulation of dynein and kinesin motor proteins by tau. Science, 319, 1086–1089.

    Article  CAS  Google Scholar 

  74. Zhang, D., Rogers, G. C., Buster, D. W., & Sharp, D. J. (2007). Three microtubule severing enzymes contribute to the ‘Pacman-flux’ machinery that moves chromosomes. Journal of Cell Biology, 177, 231–242.

    Article  CAS  Google Scholar 

  75. Stoppin-Mellet, V., Gaillard, J., Timmers, T., Neumann, E., Conway, J., & Vantard, M. (2007). Arabidopsis katanin binds microtubules using a multimeric microtubule-binding domain. Plant Physiology and Biochemistry, 45, 867–877.

    Article  CAS  Google Scholar 

  76. Moore, J. D., & Endow, S. A. (1996). Kinesin proteins: A phylum of motors for microtubule-based motility. Bioessays, 18, 207–219.

    Article  CAS  Google Scholar 

  77. Cole, D. G., & Scholey, J. M. (1995). Structural variations among the kinesins. Trends in Cell Biology, 5, 259–262.

    Article  CAS  Google Scholar 

  78. Dagenbach, E. M., & Endow, S. A. (2004). A new kinesin tree. Journal of Cell Science, 117, 3–7.

    Article  CAS  Google Scholar 

  79. Wickstead, B., & Gull, K. (2006). A ‘holistic’ kinesin phylogeny reveals new kinesin families and predicts protein functions. Molecular Biology of the Cell, 17, 1734–1743.

    Article  CAS  Google Scholar 

  80. Kinesin Homepage. http://www.proweb.org/kinesin/.

  81. Lawrence, J. L., et al. (2004). A standardized kinesin nomenclature. Journal of Cell Biology, 167, 19–22.

    Article  CAS  Google Scholar 

  82. Fehr, A. N., Asbury, C. L., & Block, S. M. (2008). Kinesin steps do not alternate in size. Biophysical Journal, 94, L20–L22.

    Article  CAS  Google Scholar 

  83. Verbrugge, S., Kapitein, L. C., & Peterman, E. J. (2007). Kinesin moving through the spotlight: Single-motor fluorescence microscopy with submillisecond time resolution. Biophysical Journal, 92, 2536–2545.

    Article  CAS  Google Scholar 

  84. Hackney, D. D. (2007). Jump starting kinesin. Journal of Cell Biology, 176, 7–9.

    Article  CAS  Google Scholar 

  85. Protein Data Bank, http://www.rcsb/pdb/.

  86. Endow, S. A., & Waligora, K. W. (1998). Determinants of kinesin motor polarity. Science, 281, 1200–1202.

    Article  CAS  Google Scholar 

  87. Wade, R. H., & Kozielski, F. (2000). Structural links to kinesin directionality and movement. Nature Structural Biology, 7, 456–460.

    Article  CAS  Google Scholar 

  88. Kull, F. J., Sablin, A. P., Lau, R., Fletterick, R. J., & Vale, R. D. (1996). Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature, 380, 550–559.

    Article  CAS  Google Scholar 

  89. Vallee, R. B., Williams, J. C., Varma, D., & Barnhart, L. E. (2003). Dynein: An ancient motor protein involved in multiple modes of transport. Journal of Neurobiology, 58, 189–200.

    Article  CAS  Google Scholar 

  90. Wickstead, B., & Gull, K. (2007). Dyneins across eukaryotes: A comparative genomic analysis. Traffic, 8, 1708–1721.

    Article  CAS  Google Scholar 

  91. King, S. M. (2000). AAA domains and the organisation of the dynein motor unit. Journal of Cell Science, 113, 2521–2526.

    CAS  Google Scholar 

  92. Carter, A. P., Garbarino, J. E., Wilson-Kubalek, E. M., Shipley, W. E., Cho, C., Milligan, R. A., et al. (2008). Structure and functional role of dynein’s microtubule-binding domain. Science, 322, 1691–1695.

    Article  CAS  Google Scholar 

  93. Kon, T., Imamula, K., Roberts, A. J., Ohkura, R., Knight, P. J., Gibbons, I. R., et al. (2009). Helix sliding in the stalk coiled coil of dynein couples ATPase and microtubule binding. Nature Structural & Molecular Biology, 16, 325–333.

    Article  CAS  Google Scholar 

  94. Akhmanova, A., & Hoogenraad, C. C. (2005). Microtubule plus-end-tracking proteins: Mechanisms and functions. Current Opinion in Cell Biology, 17, 47–54.

    Article  CAS  Google Scholar 

  95. Honnappa, S., Okhrimenko, O., Jaussi, R., Jawhari, H., Jelesarov, I., Winkler, F. K., et al. (2006). Key interaction modes of dynamic +TIP networks. Molecular Cell, 23, 663–671.

    Article  CAS  Google Scholar 

  96. Morrison, E. E. (2007). Action and interactions at microtubule ends. Cellular and Molecular Life Sciences, 64, 307–317.

    Article  CAS  Google Scholar 

  97. Slep, K. C., & Vale, R. D. (2007). Structural basis of microtubule plus end tracking by XMAP215, CLIP-170 and EB1. Molecular Cell, 27, 976–991.

    Article  CAS  Google Scholar 

  98. Brouhard, G. J., Stear, J. H., Noetzel, T. L., Al-Bassam, J., Kinoshita, K., Harrison, S. C., et al. (2008). XMAP215 is a processive microtubule polymerase. Cell, 132, 79–88.

    Article  CAS  Google Scholar 

  99. Vitre, B., Coquelle, F. M., Heichette, C., Garnier, C., Chrétien, D., & Arnal, I. (2008). EB1 regulates microtubule dynamics and tubulin sheet closure in vitro. Nature Cell Biology, 10, 415–421.

    Article  CAS  Google Scholar 

  100. Sandblad, L., Busch, K. E., Tittmann, P., Gross, H., Brunner, D., & Hoenger, A. (2006). The Schizosaccharomyces pombe EB1 homolog Mal3p binds and stabilizes the microtubule lattice seam. Cell, 127, 1415–1424.

    Article  CAS  Google Scholar 

  101. des Georges, A., Katsuki, M., Drummond, D. R., Osei, M., Cross, R. A., & Amos, L. A. (2008). Mal3, the Schizosaccharomyces pombe homolog of EB1, changes the microtubule lattice. Nature Structural & Molecular Biology, 10, 1102–1108.

    Article  CAS  Google Scholar 

  102. Korenbaum, E., & Rivero, F. (2002). Calponin homology domains at a glance. Journal of Cell Science, 115, 3543–3545.

    Article  CAS  Google Scholar 

  103. Mishima, M., Maesaki, R., Kasa, M., Watanabe, T., Fukata, M., Kaibuchi, K., et al. (2007). Structural basis for tubulin recognition by cytoplasmic linker protein 170 and its autoinhibition. Proceedings of the National Academy of Sciences of the United States of America, 104, 10346–10351.

    Article  CAS  Google Scholar 

  104. Dragestein, K. A., van Cappellen, W. A., van Haren, J., Tsibidis, G. D., Akhamanova, A., Knock, T. A., et al. (2008). Dynamic behaviour of GFP-CLIP-170 reveals fast protein turnover on microtubules plus ends. Journal of Cell Biology, 180, 729–737.

    Article  CAS  Google Scholar 

  105. Beiling, P., Kandels-Lewis, S., Telley, I. A., van Djik, J., Janke, C., & Surrey, T. (2008). CLIP-170 tracks growing microtubule ends by dynamically recognising composite EB1/tubulin binding sites. Journal of Cell Biology, 183, 1223–1233.

    Article  CAS  Google Scholar 

  106. Dixit, R., Barnett, B., Lazarus, J. B., Tokito, M., Goldman, Y. E., & Holzbaur, E. L. (2009). Microtubule plus-end tracking by CLIP-170 requires EB1. Proceedings of the National Academy of Sciences of the United States of America, 106, 492–497.

    Article  CAS  Google Scholar 

  107. Peris, L., Thery, M., Fauré, J., Saoudi, Y., Lafanachère, L., Chilton, J. K., et al. (2006). Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends. Journal of Cell Biology, 174, 839–849.

    Article  CAS  Google Scholar 

  108. Weisbrich, A., Honnappa, S., Jaussi, R., Okhrimenko, O., Frey, D., Jelesarov, I., et al. (2007). Structure-function relationship of CAP-Gly domains. Nature Structural & Molecular Biology, 14, 959–967.

    Article  CAS  Google Scholar 

  109. Watson, P., & Stephens, D. J. (2006). Microtubule plus-end loading of p150Glued is mediated by EB1 and CLIP-170 but is not required for intracellular membrane traffic in mammalian cells. Journal of Cell Science, 119, 2758–2767.

    Article  CAS  Google Scholar 

  110. Cheeseman, I. M., & Desai, A. (2008). Molecular architecture of the kinetochore-microtubule interface. Nature Reviews. Molecular Cell Biology, 9, 33–46.

    Article  CAS  Google Scholar 

  111. Tanaka, T. U., & Desai, A. (2008). Kinetochore-microtubule interactions: The means to the end. Current Opinion in Cell Biology, 20, 53–63.

    CAS  Google Scholar 

  112. Wilson-Kubalek, E. M., Cheeseman, I. M., Yoshioka, C., Desai, A., & Milligan, R. A. (2008). Orientation and structure of the Ndc80 complex on the microtubule lattice. Journal of Cell Biology, 182, 1055–1061.

    Article  CAS  Google Scholar 

  113. Ciferri, C., Pasqualato, S., Screpanti, E., Varetti, G., Santaguida, S., Dos Reis, G., et al. (2008). Implications for kinetochore-microtubule attachment from the structure of an engineered Ncd80 complex. Cell, 133, 427–439.

    Article  CAS  Google Scholar 

  114. Howard, J., & Hyman, A. A. (2007). Microtubule polymerases and depolymerases. Current Opinion in Cell Biology, 19, 31–35.

    Article  CAS  Google Scholar 

  115. Mayr, M. I., Hümmer, S., Bormann, J., Grüner, T., Adio, S., Woehlke, G., et al. (2007). The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Current Biology, 17, 488–498.

    Article  CAS  Google Scholar 

  116. Tanenbaum, M. E., Galijart, N., van Vugt, M. A., & Medema, R. H. (2006). CLIP-170 facilitates the formation of kinetochore-microtubule attachments. EMBO Journal, 25, 45–57.

    Article  CAS  Google Scholar 

  117. Scholey, J. M. (2009). Kinesin-5 in Drosophila embryo mitosis: Sliding filament or spindle matrix mechanism? Cell motility and the cytoskeleton. epub www.interscience.wiley.com.

  118. Gardner, M. K., & Odde, D. J. (2008). Dam1 complexes go it alone on disassembling microtubules. Nature Cell Biology, 10, 379–381.

    Article  CAS  Google Scholar 

  119. Davis, T. N., & Wordman, L. (2007). Rings, bracelets, sleeves and chevrons: New structures of kinetochore proteins. Trends in Cell Biology, 17, 377–382.

    Article  CAS  Google Scholar 

  120. Varga, V., Helenius, J., Tanaka, K., Hyman, A. A., Tanaka, T. U., & Howard, J. (2006). Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nature Cell Biology, 8, 957–962.

    Article  CAS  Google Scholar 

  121. Gardner, M. K., Odde, D. J., & Bloom, K. J. (2008). Kinesin-8 molecular motors: Putting the brakes on chromosome oscillations. Trends in Cell Biology, 18, 307–310.

    Article  CAS  Google Scholar 

  122. McIntosh, J. R., Grischuk, E. L., Morphew, M. K., Efremov, A. K., Zhudenkov, K., Volkov, V. A., et al. (2008). Fibrils connect microtubule tips with kinetochore: A mechanism to couple tubulin dynamics to chromosome movement. Cell, 135, 322–333.

    Article  CAS  Google Scholar 

  123. Wade, R. H., Meurer-Grob, P., Metoz, F., & Arnal, I. (1998). Organisation and structure of microtubules and microtubule-motor protein complexes. European Biophysics Journal, 27, 446–454.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Many thanks to Isabelle Arnal, Isabel Garcia-Saez, Didier Job and Dimitrios Skoufias for critically reading the manuscript and for all their remarks and corrections. Needless to say, remaining mistakes are all mine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H. Wade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wade, R.H. On and Around Microtubules: An Overview. Mol Biotechnol 43, 177–191 (2009). https://doi.org/10.1007/s12033-009-9193-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9193-5

Keywords

Navigation