Skip to main content

Advertisement

Log in

Nucleic Acids Electrotransfer-Based Gene Therapy (Electrogenetherapy): Past, Current, and Future

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

About 25 years after the publication of the first report on gene transfer in vitro in cultured cells by the means of electric pulses delivery, reversible cell electroporation for gene transfer and gene therapy (DNA electrotransfer) is at a cross in its development. Present knowledge on the effects of cell exposure to appropriate electric field pulses, particularly at the level of the cell membrane, is reported here. The importance of the models of electric field distribution in tissues and of the correct choice of electrodes and applied voltages is highlighted. The mechanisms involved in DNA electrotransfer, which include cell electropermeabilization and DNA electrophoresis, are also surveyed. This knowledge has allowed developing new nucleic acids electrotransfer conditions using combinations of permeabilizing pulses of high voltage and short duration, and of electrophoretic pulses of low voltage and long duration, which are very efficient and safer. Feasibility of electric pulses delivery for gene transfer in humans is discussed taking into account that electric pulses delivery is already regularly used for localized drug delivery in the treatment of cutaneous and subcutaneous solid tumors by electrochemotherapy. Because recent technological developments made DNA electrotransfer more and more efficient and safer, this non-viral gene therapy approach is now ready to reach the clinical stage. A good understanding of DNA electrotransfer principles and the respect of safe procedures will be key elements for a successful future transfer DNA electrotransfer into the clinics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For example the “Electroporation-Based Technologies and Treatments” course organized every second year in November at the University of Lbjubljana.

References

  1. Neumann, E., Schaefer-Ridder, M., Wang, Y., & Hofschneider, P. H. (1982). Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO Journal, 1, 841–845.

    CAS  Google Scholar 

  2. Li, S. (2008). Electroporation gene therapy. Preface. Totowa, NJ: Humana.

    Google Scholar 

  3. Daud, A. I., DeConti, R. C., Andrews, S., Urbas, P., Riker, A. I., Sondak, V. K., et al. (2008). Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. Journal of Clinical Oncology, 26, 5896–5903.

    Article  CAS  Google Scholar 

  4. Schwan, H. P. (1957). Electrical properties of tissue and cell suspensions. Advanced Biology in Medicine and Physics, 5, 147–209.

    CAS  Google Scholar 

  5. Kotnik, T., & Miklavcic, D. (2000). Analytical description of transmembrane voltage induced by electric fields on spheroidal cells. Biophysical Journal, 79, 670–679.

    Article  CAS  Google Scholar 

  6. Gimsa, J., & Wachner, D. (2001). Analytical description of the transmembrane voltage induced on arbitrarily oriented ellipsoidal and cylindrical cells. Biophysical Journal, 81, 1888–1896.

    Article  CAS  Google Scholar 

  7. Teissie, J., Knutson, V. P., Tsong, T. Y., & Lane, M. D. (1982). Electric pulse-induced fusion of 3T3 cells in monolayer culture. Science, 216, 537–538.

    Article  CAS  Google Scholar 

  8. Mir, L. M., Banoun, H., & Paoletti, C. (1988). Introduction of definite amounts of nonpermeant molecules into living cells after electropermeabilization: Direct access to the cytosol. Experimental Cell Research, 175, 15–25.

    Article  CAS  Google Scholar 

  9. Chang, D. C., & Reese, T. S. (1990). Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophysical Journal, 58, 1–12.

    Article  CAS  Google Scholar 

  10. Cukjati, D., Batiuskaite, D., Andre, F., Miklavcic, D., & Mir, L. M. (2007). Real time electroporation control for accurate and safe in vivo non-viral gene therapy. Bioelectrochemistry, 70, 501–507.

    Article  CAS  Google Scholar 

  11. Satkauskas, S., Bureau, M. F., Puc, M., Mahfoudi, A., Scherman, D., Miklavcic, D., et al. (2002). Mechanisms of in vivo DNA electrotransfer: Respective contributions of cell electropermeabilization and DNA electrophoresis. Molecular Therapy, 5, 133–140.

    Article  CAS  Google Scholar 

  12. Puc, M., Kotnik, T., Mir, L. M., & Miklavcic, D. (2003). Quantitative model of small molecules uptake after in vitro cell electropermeabilization. Bioelectrochemistry, 60, 1–10.

    Article  CAS  Google Scholar 

  13. Davalos, R. V., Mir, I. L., & Rubinsky, B. (2005). Tissue ablation with irreversible electroporation. Annals of Biomedical Engineering, 33, 223–231.

    Article  CAS  Google Scholar 

  14. Miller, L., Leor, J., & Rubinsky, B. (2005). Cancer cells ablation with irreversible electroporation. Technology in Cancer Research & Treatment, 4, 699–705.

    Google Scholar 

  15. Lavee, J., Onik, G., Mikus, P., & Rubinsky, B. (2007). A novel nonthermal energy source for surgical epicardial atrial ablation: Irreversible electroporation. The Heart Surgery Forum, 10, E162–E167.

    Article  Google Scholar 

  16. Edd, J. F., Horowitz, L., Davalos, R. V., Mir, L. M., & Rubinsky, B. (2006). In vivo results of a new focal tissue ablation technique: Irreversible electroporation. IEEE Transactions on Biomedical Engineering, 53, 1409–1415.

    Article  Google Scholar 

  17. Al-Sakere, B., Andre, F., Bernat, C., Connault, E., Opolon, P., Davalos, R. V., et al. (2007). Tumor ablation with irreversible electroporation. PLoS ONE, 2, e1135.

    Article  CAS  Google Scholar 

  18. Al-Sakere, B., Bernat, C., Andre, F., Connault, E., Opolon, P., Davalos, R. V., et al. (2007). A study of the immunological response to tumor ablation with irreversible electroporation. Technology in Cancer Research & Treatment, 6, 301–306.

    CAS  Google Scholar 

  19. Teissie, J., Golzio, M., & Rols, M. P. (2005). Mechanisms of cell membrane electropermeabilization: A minireview of our present (lack of?) knowledge. Biochimica et Biophysica Acta, 1724, 270–280.

    CAS  Google Scholar 

  20. Lopez, A., Rols, M. P., & Teissie, J. (1988). 31P NMR analysis of membrane phospholipid organization in viable, reversibly electropermeabilized Chinese hamster ovary cells. Biochemistry, 27, 1222–1228.

    Article  CAS  Google Scholar 

  21. Tieleman, D. P., Leontiadou, H., Mark, A. E., & Marrink, S. J. (2003). Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. Journal of the American Chemical Society, 125, 6382–6383.

    Article  CAS  Google Scholar 

  22. Tarek, M. (2005). Membrane electroporation: A molecular dynamics simulation. Biophysical Journal, 88, 4045–4053.

    Article  CAS  Google Scholar 

  23. Vernier, P. T., & Ziegler, M. J. (2007). Nanosecond field alignment of head group and water dipoles in electroporating phospholipid bilayers. The Journal of Physical Chemistry, 111, 12993–12996.

    CAS  Google Scholar 

  24. Mir, L. M., Bureau, M. F., Gehl, J., Rangara, R., Rouy, D., Caillaud, J. M., et al. (1999). High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci USA, 96, 4262–4267.

    Article  CAS  Google Scholar 

  25. Gehl, J., Sorensen, T. H., Nielsen, K., Raskmark, P., Nielsen, S. L., Skovsgaard, T., et al. (1999). In vivo electroporation of skeletal muscle: Threshold, efficacy and relation to electric field distribution. Biochimica et Biophysica Acta, 1428, 233–240.

    CAS  Google Scholar 

  26. Rols, M. P., Delteil, C., Golzio, M., Dumond, P., Cros, S., & Teissie, J. (1998). In vivo electrically mediated protein and gene transfer in murine melanoma. Nature Biotechnology, 16, 168–171.

    Article  CAS  Google Scholar 

  27. Suzuki, T., Shin, B. C., Fujikura, K., Matsuzaki, T., & Takata, K. (1998). Direct gene transfer into rat liver cells by in vivo electroporation. FEBS Letters, 425, 436–440.

    Article  CAS  Google Scholar 

  28. Aihara, H., & Miyazaki, J. (1998). Gene transfer into muscle by electroporation in vivo. Nature Biotechnology, 16, 867–870.

    Article  CAS  Google Scholar 

  29. Poddevin, B., Orlowski, S., Belehradek, J., Jr., & Mir, L. M. (1991). Very high cytotoxicity of bleomycin introduced into the cytosol of cells in culture. Biochemical Pharmacology, 42(Suppl), S67–S75.

    Article  CAS  Google Scholar 

  30. Bazile, D., Mir, L. M., & Paoletti, C. (1989). Voltage-dependent introduction of a d[alpha]octothymidylate into electropermeabilized cells. Biochemical and Biophysical Research Communications, 159, 633–639.

    Article  CAS  Google Scholar 

  31. Casabianca-Pignède, M.-R., Mir, L. M., Le Pecq, J.-B., & Jacquemin-Sablon, A. (1991). Stability of antiricin antibodies introduced into DC-3F Chinese hamster cells by electropermeabilization. Journal of Cell Pharmacology, 2, 54–60.

    Google Scholar 

  32. Rols, M. P., & Teissie, J. (1998). Electropermeabilization of mammalian cells to macromolecules: Control by pulse duration. Biophysical Journal, 75, 1415–1423.

    Article  CAS  Google Scholar 

  33. Teissie, J., & Ramos, C. (1998). Correlation between electric field pulse induced long-lived permeabilization and fusogenicity in cell membranes. Biophysical Journal, 74, 1889–1898.

    Article  CAS  Google Scholar 

  34. Bureau, M. F., Gehl, J., Deleuze, V., Mir, L. M., & Scherman, D. (2000). Importance of association between permeabilization and electrophoretic forces for intramuscular DNA electrotransfer. Biochimica et Biophysica Acta, 1474, 353–359.

    CAS  Google Scholar 

  35. Satkauskas, S., Andre, F., Bureau, M. F., Scherman, D., Miklavcic, D., & Mir, L. M. (2005). Electrophoretic component of electric pulses determines the efficacy of in vivo DNA electrotransfer. Human Gene Therapy, 16, 1194–1201.

    Article  CAS  Google Scholar 

  36. Villemejane, J., & Mir, L. M. (2009). Physical methods of nucleic acid transfer: General concepts and applications. British Journal of Pharmacology, 157, 207–219.

    Article  CAS  Google Scholar 

  37. Faurie, C., Phez, E., Golzio, M., Vossen, C., Lesbordes, J. C., Delteil, C., et al. (2004). Effect of electric field vectoriality on electrically mediated gene delivery in mammalian cells. Biochimica et Biophysica Acta, 1665, 92–100.

    Article  CAS  Google Scholar 

  38. Phez, E., Faurie, C., Golzio, M., Teissie, J., & Rols, M. P. (2005). New insights in the visualization of membrane permeabilization and DNA/membrane interaction of cells submitted to electric pulses. Biochimica et Biophysica Acta, 1724, 248–254.

    CAS  Google Scholar 

  39. Teissie, J., & Blangero, C. (1984). Direct experimental evidence of the vectorial character of the interaction between electric pulses and cells in cell electrofusion. Biochimica et Biophysica Acta, 775, 446–448.

    Article  CAS  Google Scholar 

  40. Teissie, J., & Rols, M. P. (1993). An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophysical Journal, 65, 409–413.

    Article  CAS  Google Scholar 

  41. Golzio, M., Teissie, J., & Rols, M. P. (2002). Direct visualization at the single-cell level of electrically mediated gene delivery. Proc Natl Acad Sci USA, 99, 1292–1297.

    Article  CAS  Google Scholar 

  42. Miklavcic, D., Semrov, D., Mekid, H., & Mir, L. M. (2000). A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochimica et Biophysica Acta, 1523, 73–83.

    CAS  Google Scholar 

  43. Sel, D., Mazeres, S., Teissie, J., & Miklavcic, D. (2003). Finite-element modeling of needle electrodes in tissue from the perspective of frequent model computation. IEEE Transactions on Biomedical Engineering, 50, 1221–1232.

    Article  Google Scholar 

  44. Corovic, S., Al Sakere, B., Haddad, V., Miklavcic, D., & Mir, L. M. (2008). Importance of contact surface between electrodes and treated tissue in electrochemotherapy. Technology in Cancer Research & Treatment, 7, 393–400.

    Google Scholar 

  45. Ivorra, A., Al-Sakere, B., Rubinsky, B., & Mir, L. M. (2008). Use of conductive gels for electric field homogenization increases the antitumor efficacy of electroporation therapies. Physics in Medicine and Biology, 53, 6605–6618.

    Article  Google Scholar 

  46. Belehradek, J., Jr., Orlowski, S., Ramirez, L. H., Pron, G., Poddevin, B., & Mir, L. M. (1994). Electropermeabilization of cells in tissues assessed by the qualitative and quantitative electroloading of bleomycin. Biochimica et Biophysica Acta, 1190, 155–163.

    Article  CAS  Google Scholar 

  47. Tounekti, O., Pron, G., Belehradek, J., Jr., & Mir, L. M. (1993). Bleomycin, an apoptosis-mimetic drug that induces two types of cell death depending on the number of molecules internalized. Cancer Research, 53, 5462–5469.

    CAS  Google Scholar 

  48. Poddevin, B., Belehradek, J., Jr., & Mir, L. M. (1990). Stable [57Co]-bleomycin complex with a very high specific radioactivity for use at very low concentrations. Biochemical and Biophysical Research Communications, 173, 259–264.

    Article  CAS  Google Scholar 

  49. Engstrom, P. E., Persson, B. R., & Salford, L. G. (1999). Studies of in vivo electropermeabilization by gamma camera measurements of (99m)Tc-DTPA. Biochimica et Biophysica Acta, 1473, 321–328.

    CAS  Google Scholar 

  50. Davalos, R. V., Otten, D. M., Mir, L. M., & Rubinsky, B. (2004). Electrical impedance tomography for imaging tissue electroporation. IEEE Transactions on Biomedical Engineering, 51, 761–767.

    Article  Google Scholar 

  51. Davalos, R. V., Rubinsky, B., & Otten, D. M. (2002). A feasibility study for electrical impedance tomography as a means to monitor tissue electroporation for molecular medicine. IEEE Transactions on Biomedical Engineering, 49, 400–403.

    Article  Google Scholar 

  52. Gehl, J., Skovsgaard, T., & Mir, L. M. (2002). Vascular reactions to in vivo electroporation: Characterization and consequences for drug and gene delivery. Biochimica et Biophysica Acta, 1569, 51–58.

    CAS  Google Scholar 

  53. Ramirez, L. H., Orlowski, S., An, D., Bindoula, G., Dzodic, R., Ardouin, P., et al. (1998). Electrochemotherapy on liver tumours in rabbits. British Journal of Cancer, 77, 2104–2111.

    CAS  Google Scholar 

  54. Sersa, G., Cemazar, M., Parkins, C. S., & Chaplin, D. J. (1999). Tumour blood flow changes induced by application of electric pulses. European Journal of Cancer, 35, 672–677.

    Article  CAS  Google Scholar 

  55. Sersa, G., Cemazar, M., Miklavcic, D., & Chaplin, D. J. (1999). Tumor blood flow modifying effect of electrochemotherapy with bleomycin. Anticancer Research, 19, 4017–4022.

    CAS  Google Scholar 

  56. Sersa, G., Jarm, T., Kotnik, T., Coer, A., Podkrajsek, M., Sentjurc, M., et al. (2008). Vascular disrupting action of electroporation and electrochemotherapy with bleomycin in murine sarcoma. British Journal of Cancer, 98, 388–398.

    Article  CAS  Google Scholar 

  57. Andre, F., & Mir, L. M. (2004). DNA electrotransfer: Its principles and an updated review of its therapeutic applications. Gene Therapy, 11(Suppl 1), S33–S42.

    Article  CAS  Google Scholar 

  58. Mir, L. M., Moller, P. H., Andre, F., & Gehl, J. (2005). Electric pulse-mediated gene delivery to various animal tissues. Advances in Genetics, 54, 83–114.

    Article  CAS  Google Scholar 

  59. Peng, B., Zhao, Y., Lu, H., Pang, W., & Xu, Y. (2005). In vivo plasmid DNA electroporation resulted in transfection of satellite cells and lasting transgene expression in regenerated muscle fibers. Biochemical and Biophysical Research Communications, 338, 1490–1498.

    Article  CAS  Google Scholar 

  60. Hojman, P., Gissel, H., Andre, F., Cournil-Henrionnet, C., Eriksen, J., Gehl, J., et al. (2008). Physiological effects of high and low voltage pulse combinations for gene electrotransfer in muscle. Human Gene Therapy, 19, 1249–1260.

    Article  CAS  Google Scholar 

  61. Orlowski, S., Belehradek, J., Jr., Paoletti, C., & Mir, L. M. (1988). Transient electropermeabilization of cells in culture. Increase of the cytotoxicity of anticancer drugs. Biochemical Pharmacology, 37, 4727–4733.

    Article  CAS  Google Scholar 

  62. Orlowski, S., & Mir, L. M. (1993). Cell electropermeabilization: A new tool for biochemical and pharmacological studies. Biochimica et Biophysica Acta, 1154, 51–63.

    CAS  Google Scholar 

  63. Mir, L. M., Orlowski, S., Belehradek, J., Jr., & Paoletti, C. (1991). Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. European Journal of Cancer, 27, 68–72.

    Article  CAS  Google Scholar 

  64. Belehradek, J., Jr., Orlowski, S., Poddevin, B., Paoletti, C., & Mir, L. M. (1991). Electrochemotherapy of spontaneous mammary tumours in mice. European Journal of Cancer, 27, 73–76.

    Article  Google Scholar 

  65. Miklavcic, D., Beravs, K., Semrov, D., Cemazar, M., Demsar, F., & Sersa, G. (1998). The importance of electric field distribution for effective in vivo electroporation of tissues. Biophysical Journal, 74, 2152–2158.

    Article  CAS  Google Scholar 

  66. Gothelf, A., Mir, L. M., & Gehl, J. (2003). Electrochemotherapy: Results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treatment Reviews, 29, 371–387.

    Article  CAS  Google Scholar 

  67. Mir, L. M. (2001). Therapeutic perspectives of in vivo cell electropermeabilization. Bioelectrochemistry, 53, 1–10.

    Article  CAS  Google Scholar 

  68. Mir, L. M., Belehradek, M., Domenge, C., Orlowski, S., Poddevin, B., Belehradek, J., Jr., et al. (1991). Electrochemotherapy, a new antitumor treatment: First clinical trial. Comptes Rendus de l’Academie des Sciences. Serie III, Sciences de la Vie, 313, 613–618.

    CAS  Google Scholar 

  69. Belehradek, M., Domenge, C., Luboinski, B., Orlowski, S., Belehradek, J., Jr., & Mir, L. M. (1993). Electrochemotherapy, a new antitumor treatment. First clinical phase I–II trial. Cancer, 72, 3694–3700.

    Article  CAS  Google Scholar 

  70. Domenge, C., Orlowski, S., Luboinski, B., De Baere, T., Schwaab, G., Belehradek, J., Jr., et al. (1996). Antitumor electrochemotherapy: New advances in the clinical protocol. Cancer, 77, 956–963.

    Article  CAS  Google Scholar 

  71. Heller, R., Jaroszeski, M. J., Glass, L. F., Messina, J. L., Rapaport, D. P., DeConti, R. C., et al. (1996). Phase I/II trial for the treatment of cutaneous and subcutaneous tumors using electrochemotherapy. Cancer, 77, 964–971.

    Article  CAS  Google Scholar 

  72. Marty, M., Sersa, G., Garbay, J. R., Gehl, J., Collins, C. G., Snoj, M., et al. (2006). Electrochemotherapy—an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: Results of the ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. The European Journal of Cancer (Including EJC Supplements), 4, 3–13.

    Article  CAS  Google Scholar 

  73. Mir, L. M., Gehl, J., Sersa, G., Collins, C. G., Garbay, J. R., Billard, V., et al. (2006). Standard operating procedures of the electrochemotherapy. The European Journal of Cancer (Including EJC Supplements), 4, 14–25.

    Article  CAS  Google Scholar 

  74. Gehl, J., & Mir, L. M. (1999). Determination of optimal parameters for in vivo gene transfer by electroporation, using a rapid in vivo test for cell permeabilization. Biochemical and Biophysical Research Communications, 261, 377–380.

    Article  CAS  Google Scholar 

  75. Andre, F., Gehl, J., Sersa, G., Preat, V., Hojman, P., Eriksen, J., et al. (2008). Efficiency of high and low voltage pulse combinations for gene electrotransfer in muscle, liver, tumor and skin. Human Gene Therapy, 19, 1261–1271.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges all his colleagues for stimulating discussions and Dr. Ruggero Cadossi for his comments on the article. The members of the European Clinigene NoE (LSH-2004-018933) and in particular the coordinator of Clinigene NoE, Dr. O. Cohen Haguenauer are also warmly acknowledged. The author also thanks the EU commission for the funding of the Cliniporator (QLK3-1999-00484), Esope (QLK3-2002-02003), and Angioskin (LSH-2004-512127) STREPs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Mir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mir, L.M. Nucleic Acids Electrotransfer-Based Gene Therapy (Electrogenetherapy): Past, Current, and Future. Mol Biotechnol 43, 167–176 (2009). https://doi.org/10.1007/s12033-009-9192-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9192-6

Keywords

Navigation