Skip to main content

Advertisement

Log in

Reviews in Molecular Biology and Biotechnology: Transmembrane Signaling by G Protein-Coupled Receptors

  • Reviews
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

As the most diverse type of cell surface receptor, the importance heptahelical G protein-coupled receptors (GPCRs) to clinical medicine cannot be overestimated. Visual, olfactory and gustatory sensation, intermediary metabolism, cell growth and differentiation are all influenced by GPCR signals. The basic receptor-G protein-effector mechanism of GPCR signaling is tuned by a complex interplay of positive and negative regulatory events that amplify the effect of a hormone binding the receptor or that dampen cellular responsiveness. The association of heptahelical receptors with a variety of intracellular partners other than G proteins has led to the discovery of potential mechanisms of GPCR signaling that extend beyond the classical paradigms. While the physiologic relevance of many of these novel mechanisms of GPCR signaling remains to be established, their existence suggests that the mechanisms of GPCR signaling are even more diverse than previously imagined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860–921.

    Article  CAS  Google Scholar 

  2. Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O., Yandell, M., Evans, C. A., & Holt, R. A., et al. (2001). The sequence of the human genome. Science, 291, 1304–1351.

    Article  CAS  Google Scholar 

  3. Bargmann, C. (1998). Neurobiology of the Caenorhabditis elegans genome. Science, 282, 2028–2033.

    Article  CAS  Google Scholar 

  4. Flower, D. R. (1999). Modelling G-protein-coupled receptors for drug design. Biochimica Et Biophysica Acta, 1422, 207–234.

    CAS  Google Scholar 

  5. Fredriksson, R., Lagerstrom, M. C., Lundin, L. G., & Schioth, H. B. (2003). The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Molecular Pharmacology, 63, 1256–1272.

    Article  CAS  Google Scholar 

  6. Birnbaumer, L., Pohl, S. L., Michiel, H., Krans, M. J., & Rodbell, M. (1970). The actions of hormones on the adenyl cyclase system. Advances in Biochemical Psychopharmacology, 3, 185–208.

    CAS  Google Scholar 

  7. Insel, P. A., Maguire, M. E., Gilman, A. G., Bourne, H. R., Coffino, P., & Melmon, K. L. (1976). Beta adrenergic receptors and adenylate cyclase: Products of separate genes? Molecular Pharmacology, 12, 1062–1069.

    CAS  Google Scholar 

  8. Gilman, A. G. (1987). G proteins: Transducers of receptor-generated signals. Annual Review of Biochemistry, 56, 615–649.

    Article  CAS  Google Scholar 

  9. Sternweis, P. C., & Gilman, A. G. (1979). Reconstitution of catecholamine-sensitive adenylate cyclase. Reconstitution of the uncoupled variant of the S40 lymphoma cell. Journal of Biological Chemistry, 254, 3333–3340.

    CAS  Google Scholar 

  10. Northup, J. K., Sternweis, P. C., Smigel, M. D., Schleifer, L. S., Ross, E. M., & Gilman, A. G. (1980). Purification of the regulatory component of adenylate cyclase. Proceedings of the National Academy of Sciences of the United States of America, 77, 6516–6520.

    Article  CAS  Google Scholar 

  11. Manning, D. R., & Gilman, A. G. (1983). The regulatory components of adenylate cyclase and transducin. A family of structurally homologous guanine nucleotide-binding proteins. Journal of Biological Chemistry, 258, 7059–7063.

    CAS  Google Scholar 

  12. Lefkowitz, R. J. (2000). The superfamily of heptahelical receptors. Nature Cell Biology, 2, E133–E136.

    Article  CAS  Google Scholar 

  13. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., Le Trong, I., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M., & Miyano, M. (2000). Crystal structure of rhodopsin: A G protein-coupled receptor. Science, 289, 739–745.

    Article  CAS  Google Scholar 

  14. Cherezov, V., Rosenbaum, D. M., Hanson, M. A., Rasmussen, S. G. F., Thian, F. S., Kobilka, T. S., Choi, H.-J., Kuhn, P., Weis, W. I., Kobilka, B. K., & Stevens, R. C. (2007). High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science, 318, 1258–1265.

    Article  CAS  Google Scholar 

  15. Rosenbaum, D. M., Cherezov, V., Hanson, M. A., Rasmussen, S. G. F., Thian, F. S., Kobilka, T. S., Choi, H.-J., Yao, X.-J., Weis, W. I., Stevens, R. C., & Kobilka, B. K. (2007). GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science, 318, 1266–1273.

    Article  CAS  Google Scholar 

  16. Rasmussen, S. G. F., Choi, H.-J., Rosenbaum, D. M., Kobilka, T. S., Thian, F. S., Edwards, P. C., Burghammer, M., Ratnala, V. R. P., Sanishvili, R., Fischetti, R. F., Schertler, G. F. X., Weis, W. I., & Kobilka, B. K. (2007). Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature, 450, 383–387.

    Article  CAS  Google Scholar 

  17. Kolakowski, L. F., Jr. (1994). GCRDb: A G-protein coupled receptor database. Receptors & Channels, 2, 1–7.

    CAS  Google Scholar 

  18. Perez, D. M. (2003). The evolutionarily triumphant G protein-coupled receptor. Molecular Pharmacology, 63, 1202–1205.

    Article  CAS  Google Scholar 

  19. Arshavsky, V. Y., Lamb, T. D., & Pugh, E. N., Jr. (2002). G proteins and phototransduction. Annual Review of Biochemistry, 64, 153–187.

    CAS  Google Scholar 

  20. Ridge, K. D., Abdulaev, N. G., Sousa, M., & Palczewski, K. (2003). Phototransduction: Crystal clear. Trends in Biochemical Sciences, 28, 479–487.

    Article  CAS  Google Scholar 

  21. Gether, U., & Kobilka, B. K. (1998). G protein-coupled receptors. II. Mechanism of agonist activation. Journal of Biological Chemistry, 273, 17979–17982.

    Article  CAS  Google Scholar 

  22. De Lean, A., Stadel, J. M., & Lefkowitz, R. J. (1980). A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. Journal of Biological Chemistry, 255, 7108–7117.

    Google Scholar 

  23. Samama, P., Cotecchia, S., Costa, T., & Lefkowitz, R. J. (1993). A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model. Journal of Biological Chemistry, 268, 4625–4536.

    CAS  Google Scholar 

  24. Lefkowitz, R. J., Cotecchia, S., Samama, P., & Costa, T. (1993). Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends in Pharmacological Sciences, 14, 303–307.

    Article  CAS  Google Scholar 

  25. Maudsley, S., Martin, B., & Luttrell, L. M. (2005). Perspectives in Pharmacology: The origins of diversity and specificity in G protein-coupled receptor signaling. Journal of Pharmacology and Experimental Therapeutics, 314, 485–494.

    Article  CAS  Google Scholar 

  26. Perez, D. M., Hwa, J., Gaivin, R., Mathur, M., Brown, F., & Graham, R. M. (1996). Constitutive activation of a single effector pathway: Evidence for multiple activation states of a G protein-coupled receptor. Molecular Pharmacology, 49, 112–122.

    CAS  Google Scholar 

  27. Barroso, S., Richard, F., Nicolas-Etheve, D., Kitabgi, P., & Labbe-Jullie, C. (2002). Constitutive activation of the neurotensin receptor 1 by mutation of Phe(358) in Helix seven. British Journal of Pharmacology, 135, 997–1002.

    Article  CAS  Google Scholar 

  28. Kenakin, T. (2002). Drug efficacy at G protein-coupled receptors. Annual Review of Pharmacology and Toxicology, 42, 349–379.

    Article  CAS  Google Scholar 

  29. Kenakin, T. (2003). Ligand-selective receptor conformations revisited: The promise and the problem. Trends in Pharmacological Sciences, 24, 346–354.

    Article  CAS  Google Scholar 

  30. Seifert, R., Gether, U., Wenzel-Seifert, K., & Kobilka, B. K. (1999). Effects of guanine, inosine, and xanthine nucleotides on β(2)-adrenergic receptor/G(s) interactions: Evidence for multiple receptor conformations. Molecular Pharmacology, 56, 348–358.

    CAS  Google Scholar 

  31. Gurevich, V. V., Pals-Rylaarsdam, R., Benovic, J. L., Hosey, M. M., & Onorato, J. J. (1997). Agonist-receptor-arrestin, an alternative ternary complex with high agonist affinity. Journal of Biological Chemistry, 272, 28849–28852.

    Article  CAS  Google Scholar 

  32. Key, T. A., Bennett, T. A., Foutz, T. D., Gurevich, V. V., Sklar, L. A., & Prossnitz, E. R. (2001). Regulation of formyl peptide receptor agonist affinity by reconstitution with arrestins and heterotrimeric G proteins. Journal of Biological Chemistry, 276, 49204–49212.

    Article  CAS  Google Scholar 

  33. Swaminath, G., Xiang, Y., Lee, T. W., Steenhuis, J., Parnot, C., & Kobilka, B. K. (2004). Sequential binding of agonists to the beta2 adrenoceptor. Kinetic evidence for intermediate conformational states. Journal of Biological Chemistry, 279, 686–691.

    Article  CAS  Google Scholar 

  34. Whistler, J. L., & von Zastrow, M. (1998). Morphine-activated opioid receptors elude desensitization by beta-arrestin. Proceedings of the National Academy of Sciences of the United States of America, 95, 9914–9919.

    Article  CAS  Google Scholar 

  35. Kohout, T. A., Nicholas, S. L., Perry, S. J., Reinhart, G., Junger, S., & Struthers, R. S. (2004). Differential desensitization, receptor phosphorylation, beta-arrestin recruitment, and ERK1/2 activation by the two endogenous ligands for the CC chemokine receptor 7. Journal of Biological Chemistry, 279, 23214–23222.

    Article  CAS  Google Scholar 

  36. Holloway, A. C., Qian, H., Pipolo, L., Ziogas, J., Miura, S., Karnik, S., Southwell, B. R., Lew, M. J., & Thomas, W. G. (2002). Side-chain substitutions within angiotensin II reveal different requirements for signaling, internalization, and phosphorylation of type 1a angiotensin receptors. Molecular Pharmacology, 61, 768–777.

    Article  CAS  Google Scholar 

  37. Bisello, A., Chorev, M., Rosenblatt, M., Monticelli, L., Mierke, D. F., & Ferrari, S. L. (2002). Selective ligand-induced stabilization of active and desensitized parathyroid hormone type 1 receptor conformations. Journal of Biological Chemistry, 277, 38524–38530.

    Article  CAS  Google Scholar 

  38. Wei, H., Ahn, S., Shenoy, S. K., Karnik, S. S., Hunyady, L., Luttrell, L. M., & Lefkowitz, R. J. (2003). Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proceedings of the National Academy of Sciences of the United States of America, 100, 10782–10787.

    Article  CAS  Google Scholar 

  39. Gesty-Palmer, D., Chen, M., Oakley, R., Reiter, E., Ahn, S., Nelson, C. D., Spurney, R. F., Luttrell, L. M., & Lefkowitz, R. J. (2006). Distinct conformations of the parathyroid hormone receptor mediate G protein and beta-arrestin dependent activation of ERK1/2. Journal of Biological Chemistry, 281, 10856–10864.

    Article  CAS  Google Scholar 

  40. Kenakin, T. (2007). Functional selectivity through protean and biased agonism: Who steers the ship? Molecular Pharmacology, 72, 1393–1401.

    Article  CAS  Google Scholar 

  41. Downes, G. B., & Gautam, N. (1999). The G protein subunit gene families. Genomics, 62, 544–552.

    Article  CAS  Google Scholar 

  42. Kurose H. (2003). Galpha12 and Galpha13 as key regulatory mediator in signal transduction. Life Sciences, 74, 155–161.

    Article  CAS  Google Scholar 

  43. Schmidt, C. J., Thomas, T. C., Levine, M. A., & Neer, N. J. (1992). Specificity of G protein beta and gamma subunit interactions. Journal of Biological Chemistry, 267, 13807–13810.

    CAS  Google Scholar 

  44. Hildebrandt, J. D. (1997). Role of subunit diversity in signaling by heterotrimeric G proteins. Biochemical Pharmacology, 54, 325–339.

    Article  CAS  Google Scholar 

  45. Ford, C. E., Skiba, N. P., Bae, H., Daaka, Y., Reuveny, E., Shekter, L. R., Rosal, R., Weng, G., Yang, C. S., Iyengar, R., Miller, R. J., Jan, L. Y., Lefkowitz, R. J., & Hamm, H. E. (1998). Molecular basis for interactions of G protein betagamma subunits with effectors. Science, 280, 1271–1274.

    Article  CAS  Google Scholar 

  46. Sprang, S. R. (1997). G protein mechanisms: Insights from structural analysis. Annual Review of Pharmacology and Toxicology, 36, 461–480.

    Google Scholar 

  47. Coleman, D. E., & Sprang, S. R. (1996). How G proteins work: A continuing story. Trends in Biochemical Sciences, 21, 41–44.

    CAS  Google Scholar 

  48. Casey, P. J. (1994). Lipid modifications of G proteins. Current Opinion in Cell Biology, 6, 219–225.

    Article  CAS  Google Scholar 

  49. Clapham, D. E., & Neer, E. J. (1993). New roles for G-protein beta gamma-dimers in transmembrane signaling. Nature, 365, 403–406.

    Article  CAS  Google Scholar 

  50. Zwartkruis, F. J., & Bos, J. L. (1999). Ras and Rap1: Two highly related small GTPases with distinct function. Experimental Cell Research, 253, 157–165.

    Article  CAS  Google Scholar 

  51. Sunahara, R. K., Dessauer, C. W., & Gilman, A. G. (1996). Complexity and diversity of mammalian adenylyl cyclases. Annual Review of Pharmacology and Toxicology, 36, 461–480.

    Article  CAS  Google Scholar 

  52. Morris, A. J., & Scarlata, S. (1997). Regulation of effectors by G-protein alpha- and beta gamma-subunits. Recent insights from studies of the phospholipase c-beta isoenzymes. Biochemical Pharmacology, 54, 429–435.

    Article  CAS  Google Scholar 

  53. Wickman, K. D., & Clapham, D. E. (1995). G-protein regulation of ion channels. Current Opinion in Neurobiology, 5, 278–285.

    Article  CAS  Google Scholar 

  54. Albert, P. R., & Robillard, L. (2002). G protein specificity: Traffic direction required. Cellular Signalling, 14, 407–418.

    Article  CAS  Google Scholar 

  55. Stoffel, R. H. III, Pitcher, J. A., & Lefkowitz, R. J. (1997). Targeting G protein-coupled receptor kinases to their receptor substrates. Journal of Membrane Biology, 157, 1–8.

    Article  CAS  Google Scholar 

  56. Perry, S. J., Baillie, G. S., Kohout, T. A., McPhee, I., Magiera, M. M., Ang, K. L., Miller, W. E., McLean, A. J., Conti, M., Houslay, M. D., & Lefkowitz, R. J. (2002). Targeting of cyclic AMP degradation to beta 2-adrenergic receptors by beta-arrestins. Science, 298, 834–836.

    Article  CAS  Google Scholar 

  57. Baillie, G. S., Sood, A., McPhee, I., Gall, I., Perry, S. J., Lefkowitz, R. J., & Houslay, M. D. (2003). Beta-Arrestin-mediated PDE4 cAMP phosphodiesterase recruitment regulates beta-adrenoceptor switching from Gs to Gi. Proceedings of the National Academy of Sciences of the United States of America, 100, 940–945.

    Article  CAS  Google Scholar 

  58. Ross, E. M. (1995). G protein GTPase-activating proteins: Regulation of speed, amplitude, and signaling selectivity. Recent Progress in Hormone Research, 50, 207–221.

    CAS  Google Scholar 

  59. Ross, E. M., & Wilkie, T. M. (2000). GTPase-activating proteins for heterotrimeric G proteins: Regulators of G protein signaling (RGS) and RGS-like proteins. Annual Review of Biochemistry, 69, 795–827.

    Article  CAS  Google Scholar 

  60. Berman, D. M., & Gilman, A. G. (1998). Mammalian RGS proteins: Barbarians at the gate. Journal of Biological Chemistry, 273, 1269–1272.

    Article  CAS  Google Scholar 

  61. Schulz, R. (2001). The pharmacology of phosducin. Pharmacological Research, 43, 1–10.

    Article  CAS  Google Scholar 

  62. Pitcher, J., Lohse, M. J., Codina, J., Caron, M. G., & Lefkowitz, R. J. (1992). Desensitization of the isolated beta 2-adrenergic receptor by beta-adrenergic receptor kinase, cAMP-dependent protein kinase, and protein kinase C occurs via distinct molecular mechanisms. Biochemistry, 31, 3193–3197.

    Article  CAS  Google Scholar 

  63. Freedman, N. J., & Lefkowitz, R. J. (1996). Desensitization of G protein-coupled receptors. Recent Progress in Hormone Research, 51, 319–351.

    CAS  Google Scholar 

  64. Daaka, Y., Luttrell, L. M., & Lefkowitz, R. J. (1997). Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature, 390, 88–91.

    Article  CAS  Google Scholar 

  65. Zamah, A. M., Delahunty, M., Luttrell, L. M., & Lefkowitz, R. J. (2002). Protein kinase A-mediated phosphorylation of the beta2-adrenergic receptor regulates its coupling to Gs and Gi. Demonstration in a reconstituted system. Journal of Biological Chemistry, 277, 31249–31256.

    Article  CAS  Google Scholar 

  66. Lawler, O. A., Miggin, S. M., & Kinsella, B. T. (2001). Protein kinase A-mediated phosphorylation of serine 357 of the mouse prostacyclin receptor regulates its coupling to Gs-, to Gi- and to Gq-coupled effector signaling. Journal of Biological Chemistry, 276, 33596–33607.

    Article  CAS  Google Scholar 

  67. Lefkowitz, R. J., Pierce, K. L., & Luttrell, L. M. (2002). Dancing with different partners: Protein kinase A phosphorylation of seven membrane-spanning receptors regulates their G protein-coupling specificity. Molecular Pharmacology, 62, 971–974.

    Article  CAS  Google Scholar 

  68. Lohse, M. J., Andexinger, S., Pitcher, J., Trukawinski, S., Codina, J., Faure, J.-P., Caron, M. G., & Lefkowitz, R. J. (1993). Receptor specific desensitization with purified proteins. Kinase dependence and receptor specificity of β-arrestin and arrestin in the β2-adrenergic receptor and rhodopsin systems. Journal of Biological Chemistry, 267, 8558–8564.

    Google Scholar 

  69. Ferguson, S. S. (2001). Evolving concepts in G protein-coupled receptor endocytosis: The role in receptor desensitization and signaling. Pharmacological Reviews, 53, 1–24.

    CAS  Google Scholar 

  70. Luttrell, L. M., & Lefkowitz, R. J. (2002). The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. Journal of Cell Science, 115, 455–465.

    CAS  Google Scholar 

  71. Goodman, O. B. Jr., Krupnick, J. G., Santini, F., Gurevich, V. V., Penn, R. B., Gagnon, A. W., Keen, J. H., & Benovic, J. L. (1996). Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature, 383, 447–450.

    Article  CAS  Google Scholar 

  72. Laporte, S. A., Oakley, R. H., Zhang, J., Holt, J. A., Ferguson, S. S., Caron, M. G., & Barak, L. S. (1999). The beta2-adrenergic receptor/beta-arrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 96, 3712–3717.

    Article  CAS  Google Scholar 

  73. Carman, C. V., Parent, J. L., Day, P. W., Pronin, A. N., Sternweis, P. M., Wedegaertner, P. B., Gilman, A. G., Benovic, J. L., & Kozasa, T. (1999). Selective regulation of Galpha(q/11) by an RGS domain in the G protein-coupled receptor kinase, GRK2. Journal of Biological Chemistry, 274, 34483–34492.

    Article  CAS  Google Scholar 

  74. Lodowski, D. T., Pitcher, J. A., Capel, W. D., Lefkowitz, R. J., & Tesmer, J. J. (2003). Keeping G proteins at bay: A complex between G protein-coupled receptor kinase 2 and G beta gamma. Science, 300, 1256–1262.

    Article  CAS  Google Scholar 

  75. Dhami, G. K., Dale, L. B., Anborgh, P. H., O’Connor-Halligan, K. E., Sterne-Marr, R., & Ferguson, S. S. (2004). G Protein-coupled receptor kinase 2 RGS homology domain binds to both metabotropic glutamate receptor 1a and G alpha q to attenuate signaling. Journal of Biological Chemistry, 279, 16614–16620.

    Article  CAS  Google Scholar 

  76. Barak, L. S., Ferguson, S. S., Zhang, J., & Caron, M. G. (1997). A beta-arrestin/green fluorescent protein biosensor for detecting G protein-coupled receptor activation. Journal of Biological Chemistry, 272, 27497–27500.

    Article  CAS  Google Scholar 

  77. Oakley, R. H., Laporte, S. A., Holt, J. A., Barak, L. S., & Caron, M. G. (2001). Molecular determinants underlying the formation of stable intracellular G protein-coupled receptor-beta-arrestin complexes after receptor endocytosis. Journal of Biological Chemistry, 276, 19452–19460.

    Article  CAS  Google Scholar 

  78. Oakley, R. H., Laporte, S. A., Holt, J. A., Caron, M. G., & Barak, L. S. (2000). Differential affinities of visual arrestin, beta-arrestin1, and beta-arrestin2 for G protein-coupled receptors delineate two major classes of receptors. Journal of Biological Chemistry, 275, 17201–17210.

    Article  CAS  Google Scholar 

  79. Kohout, T. A., Lin, F.-T., Perry, S. J., Conner, D. A., & Lefkowitz, R. J. (2001). Beta-Arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking. Proceedings of the National Academy of Sciences of the United States of America, 98, 1601–1606.

    Article  CAS  Google Scholar 

  80. Lin, F.-T., Krueger, K. M., Kendall, H. E., Daaka, Y., Fredericks, Z. L., Pitcher, J. A., & Lefkowitz, R. J. (1997). Clathrin-mediated endocytosis of the beta-adrenergic receptor is regulated by phosphorylation/dephosphorylation of beta-arrestin1. Journal of Biological Chemistry, 272, 31051–31057.

    Article  CAS  Google Scholar 

  81. Lin, F.-T., Chen, W., Shenoy, S., Cong, M., Exum, S. T., & Lefkowitz, R. J. (2002). Phosphorylation of beta-arrestin2 regulates it function in internalization of beta(2)-adrenergic receptors. Biochemistry, 41, 10692–10699.

    Article  CAS  Google Scholar 

  82. Shenoy, S. K., McDonald, P. H., Kohout, T. A., & Lefkowitz, R. J. (2001). Regulation of receptor fate by ubiquitination of activated β2-adrenergic receptor and β-arrestin. Science, 294, 1307–1313.

    Article  CAS  Google Scholar 

  83. Martin, N. P., Lefkowitz, R. J., & Shenoy, S. K. (2003). Regulation of V2 vasopressin receptor degradation by agonist-promoted ubiquitination. Journal of Biological Chemistry, 278, 45954–45959.

    Article  CAS  Google Scholar 

  84. Shenoy, S. K., & Lefkowitz, R. J. (2003). Trafficking pattern of beta-arrestin and G protein-coupled receptors determined by the kinetics of beta-arrestin deubiquitination. Journal of Biological Chemistry, 278, 14498–14506.

    Article  CAS  Google Scholar 

  85. Paing, M. M., Stutts, A. B., Kohout, T. A., Lefkowitz, R. J., & Trejo, J. (2002). Beta-arrestins regulate protease-activated receptor-1 desensitization but not internalization or down-regulation. Journal of Biological Chemistry, 277, 1292–1300.

    Article  CAS  Google Scholar 

  86. Vines, C. M., Revankar, C. M., Maestas, D. C., LaRush, L. L., Cimino, D. F., Kohout, T. A., Lefkowitz, R. J., & Prossnitz, E. R. (2003). N-formyl peptide receptors internalize but do not recycle in the absence of arrestins. Journal of Biological Chemistry, 278, 41581–41584.

    Article  CAS  Google Scholar 

  87. Brasselet, S., Guillen, S., Vincent, J. P., & Mazella, J. (2002). Beta-arrestin is involved in the desensitization but not in the internalization of the somatostatin receptor 2A expressed in CHO cells. FEBS Letters, 10, 124–128.

    Article  Google Scholar 

  88. Zhang, J., Ferguson, S. S., Barak, L. S., Menard, L., & Caron, M. G. (1996). Dynamin and beta-arrestin reveal distinct mechanisms for G protein-coupled receptor internalization. Journal of Biological Chemistry, 271, 18302–18305.

    Article  CAS  Google Scholar 

  89. Vogler, O., Nolte, B., Voss, M., Schmidt, M., Jakobs, K. H., & van Koppen, C. J. (1999). Regulation of muscarinic acetylcholine receptor sequestration and function by beta-arrestin. Journal of Biological Chemistry, 274, 12333–12338.

    Article  CAS  Google Scholar 

  90. Rapacciuolo, A., Suvarna, S., Barki-Harrington, L., Luttrell, L. M., Cong, M., Lefkowitz, R. J., & Rockman, H. A. (2003). Phosphorylation sites of the beta-1 adrenergic receptor determine the internalization pathway. Journal of Biological Chemistry, 278, 35403–35411.

    Google Scholar 

  91. Pitcher, J. A., Payne, E. S., Csortos, C., DePaoli-Roach, A. A., & Lefkowitz, R. J. (1995). The G-protein-coupled receptor phosphatase: A protein phosphatase type 2A with a distinct subcellular distribution and substrate specificity. Proceedings of the National Academy of Sciences of the United States of America, 92, 8343–8347.

    Article  CAS  Google Scholar 

  92. Oakley, R. H., Laporte, S. A., Holt, J. A., Barak, L. S., & Caron, M. G. (1999). Association of beta-arrestin with G protein-coupled receptors during clathrin-mediated endocytosis dictates the profile of receptor resensitization. Journal of Biological Chemistry, 274, 32248–32257.

    Article  CAS  Google Scholar 

  93. Dale, L. B., Seachrist, J. L., Babwah, A. V., & Ferguson, S. S. (2004). Regulation of angiotensin II type 1A receptor intracellular retention, degradation, and recycling by Rab5, Rab7, and Rab11 GTPases. Journal of Biological Chemistry, 279, 13110–13118.

    Article  CAS  Google Scholar 

  94. Seachrist, J. L., & Ferguson, S. S. (2003). Regulation of G protein-coupled receptor endocytosis and trafficking by Rab GTPases. Life Sciences, 74, 225–235.

    Article  CAS  Google Scholar 

  95. Cao, T. T., Deacon, H. W., Reczek, D., Bretscher, A., & von Zastrow, M. (1999). A kinase-regulated PDZ-domain interaction controls endocytic sorting of the beta 2-adrenergic receptor. Nature, 401, 286–290.

    Article  CAS  Google Scholar 

  96. Whistler, J. L., Enquist, J., Marley, A., Fong, J., Gladher, F., Tsuruda, P., Murray, S. R., & von Zastrow, M. (2002). Modulation of postendocytic sorting of G protein-coupled receptors. Science, 297, 529–531.

    Article  Google Scholar 

  97. Gage, R. M., Kim, K. A., Cao, T. T., & von Zastrow, M. (2001). A transplantable sorting signal that is sufficient to mediate rapid recycling of G protein-coupled receptors. Journal of Biological Chemistry, 276, 44712–44720.

    Article  CAS  Google Scholar 

  98. Premont, R. T., Claing, A., Vitale, N., Freeman, J. L., Pitcher, J. A., Patton, W. A., Moss, J., Vaughan, M., & Lefkowitz, R. J. (1998). Beta2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein. Proceedings of the National Academy of Sciences of the United States of America, 95, 14082–14087.

    Article  CAS  Google Scholar 

  99. Claing, A., Chen, W., Miller, W. E., Vitale, N., Moss, J., Premont, R. T., & Lefkowitz, R. J. (2001). Beta-Arrestin-mediated ADP-ribosylation factor 6 activation and beta 2-adrenergic receptor endocytosis. Journal of Biological Chemistry, 276, 42509–42513.

    Article  CAS  Google Scholar 

  100. Devi, L. (2001). Heterodimerization of G-protein-coupled receptors: Pharmacology, signaling and trafficking. Trends in Pharmacological Sciences, 22, 532–537.

    Article  CAS  Google Scholar 

  101. Milligan, G. (2001). Oligomerisation of G-protein-coupled receptors. Journal of Cell Science, 114, 1265–1271.

    CAS  Google Scholar 

  102. Angers, S., Salahpour, A., & Bouvier, M. (2002). Dimerization: An emerging concept for G protein-coupled receptor ontogeny and function. Annual Review of Pharmacology and Toxicology, 42, 409–435.

    Article  CAS  Google Scholar 

  103. Nakanishi-Matsui, M., Zheng, Y. W., Sulciner, D. J., Weiss, E. J., Ludeman, M. J., & Coughlin, S. R. (2000). PAR3 is a cofactor for PAR4 activation by thrombin. Nature, 404, 609–613.

    Article  CAS  Google Scholar 

  104. O’Brien, P. J., Prevost, N., Molino, M., Hollinger, M. K., Woolkalis, M. J., Woulfe, D. S., & Brass, L. F. (2000). Thrombin responses in human endothelial cells. Contributions from receptors other than PAR1 include the transactivation of PAR2 by thrombin-cleaved PAR1. Journal of Biological Chemistry, 275, 13502–13509.

    Article  CAS  Google Scholar 

  105. Baneres, J. L., & Parello, J. (2003). Structure-based analysis of GPCR function: Evidence for a novel pentameric assembly between the dimeric leukotriene B4 receptor BLT1 and the G-protein. Journal of Molecular Biology, 329, 815–829.

    Article  CAS  Google Scholar 

  106. Marshall, G. R. (2001). Peptide interactions with G-protein coupled receptors. Biopolymers, 60, 246–277.

    Article  CAS  Google Scholar 

  107. Fotiadis, D., Liang, Y., Filipek, S., Saperstein, D. A., Engel, A., & Palczewski, K. (2003). Atomic-force microscopy: Rhodopsin dimers in native disc membranes. Nature, 421, 127–128.

    Article  CAS  Google Scholar 

  108. Jones, K. A., Borowsky, B., Tamm, J. A., Craig, D. A., Durkin, M. M., Dai, M., Yao, W. J., Johnson, M., Gunwaldsen, C., Huang, L. Y., Tang, C., Shen, Q., Salon, J. A., Morse, K., Laz, T., Smith, K. E., Nagarathnam, D., Noble, S. A., Branchek, T. A., & Gerald, C. (1998). GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature, 396, 674–679.

    Article  CAS  Google Scholar 

  109. Kaupmann, K., Malitschek, B., Schuler, V., Heid, J., Froestl, W., Beck, P., Mosbacher, J., Bischoff, S., Kulik, A., Shigemoto, R., Karschin, A., & Bettler, B. (1998). GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature, 396., 683–687.

    Article  Google Scholar 

  110. Kniazeff, J., Galvez, T., Labesse, G., & Pin, J. P. (2002). No ligand binding in the GB2 subunit of the GABA(B) receptor is required for activation and allosteric interaction between the subunits. Journal of Neuroscience, 22, 7352–7361.

    CAS  Google Scholar 

  111. Robbins, M. J., Calver, A. R., Filippov, A. K., Hirst, W. D., Russell, R. B., Wood, M. D., Nasir, S., Couve, A., Brown, D. A., Moss, S. J., & Pangalos, M. N. (2001). GABA(B2) is essential for g-protein coupling of the GABA(B) receptor heterodimer. Journal of Neuroscience, 21, 8043–8052.

    CAS  Google Scholar 

  112. Margeta-Mitrovic, M., Jan, Y. N., & Jan, L. Y. (2000). A trafficking checkpoint controls GABA(B) receptor heterodimerization. Neuron, 27, 97–106.

    Article  CAS  Google Scholar 

  113. Ng, G. Y., O’Dowd, B. F., Lee, S. P., Chung, H. T., Brann, M. R., Seeman, P., & George, S. R. (1996). Dopamine D2 receptor dimers and receptor-blocking peptides. Biochemical and Biophysical Research Communications, 227, 200–204.

    Article  CAS  Google Scholar 

  114. Schulz, A., Grosse, R., Schultz, G., Gudermann, T., & Schoneberg, T. (2000). Structural implication for receptor oligomerization from functional reconstitution studies of mutant V2 vasopressin receptors. Journal of Biological Chemistry, 275, 2381–2389.

    Article  CAS  Google Scholar 

  115. Vila-Coro, A. J., Rodriguez-Frade, J. M., Martin de Ana, A., Moreno-Ortiz, M. C., Martinez, A. C., & Mellado, M. (1999). The chemokine SDF-1alpha triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB Journal, 13, 1699–1710.

    CAS  Google Scholar 

  116. Rodriguez-Frade, J. M., Vila-Coro, A. J., Martin de Ana, A. M., Albar, J. P., Martinez, A. C., & Mellado, M. (1999). The chemokine monocyte chemoattractant protein-1 induces functional responses through dimerization of its receptor CCR2. Proceedings of the National Academy of Sciences of the United States of America, 96, 3628–3633.

    Article  CAS  Google Scholar 

  117. Vila-Coro, A. J., Mellado, M., Martin de Ana, A., Lucas, P., del Real, G., Martinez, A. C., & Rodriguez-Frade, J. M. (2000). HIV-1 infection through the CCR5 receptor is blocked by receptor dimerization. Proceedings of the National Academy of Sciences of the United States of America, 97, 3388–3393.

    Article  CAS  Google Scholar 

  118. Jordan, B. A., & Devi, L. A. (1999). G-protein-coupled receptor heterodimerization modulates receptor function. Nature, 399, 697–700.

    Article  CAS  Google Scholar 

  119. George, S. R., Fan, T., Xie, Z., Tse, R., Tam, V., Varghese, G., & O’Dowd, B. F. (2000). Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. Journal of Biological Chemistry, 275, 26128–26135.

    Google Scholar 

  120. AbdAlla, S., Lother, H., & Quitterer, U. (2000). AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature, 407, 94–98.

    Article  CAS  Google Scholar 

  121. AbdAlla, S., Lother, H., El Massiery, A., & Quitterer, U. (2001). Increased AT(1) receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nature Medicine, 7, 1003–1009.

    Article  CAS  Google Scholar 

  122. Barki-Harrington, L., Luttrell, L. M., & Rockman, H. A. (2003). Dual inhibition of beta-adrenergic and angiotensin II receptors by a single antagonist: A functional role for receptor-receptor interaction in vivo. Circulation, 108, 1611–1618.

    Article  CAS  Google Scholar 

  123. Kroeger, K. M., Pfleger, K. D., & Eidne, K. A. (2003). G-protein coupled receptor oligomerization in neuroendocrine pathways. Fronters Neuroendocrinology, 24, 254–278.

    Article  CAS  Google Scholar 

  124. Breitwieser, G. E. (2004). G protein-coupled receptor oligomerization: Implications for G protein activation and cell signaling. Circulation Research, 94, 17–27.

    Article  CAS  Google Scholar 

  125. Terrillon, S., & Bouvier, M. (2004). Roles of G-protein-coupled receptor dimerization. EMBO Reports, 5, 30–34.

    Article  CAS  Google Scholar 

  126. Whistler, J. L., Chuang, H. H., Chu, P., Jan, L. Y., & von Zastrow, M. (1999). Functional dissociation of mu opioid receptor signaling and endocytosis: Implications for the biology of opiate tolerance and addiction. Neuron, 23, 737–746.

    Article  CAS  Google Scholar 

  127. Sexton, P. M., Albiston, A., Morfis, M., & Tilakaratne, N. (2001). Receptor activity modifying proteins. Cellular Signalling, 13, 73–83.

    Article  CAS  Google Scholar 

  128. Foord S. M., & Marshall, F. H. (1999). RAMPs: Accessory proteins for seven transmembrane domain receptors. Trends in Pharmacological Sciences, 20, 184–187.

    Article  CAS  Google Scholar 

  129. Brady, A. E., & Limbird, L. E. (2002). G protein-coupled receptor interacting proteins: Emerging roles in localization and signal transduction. Cellular Signalling, 14, 297–309.

    Article  CAS  Google Scholar 

  130. Bockaert, J., Marin, P., Dumuis, A., & Fagni, L. (2003). The ‘magic tail’ of G protein-coupled receptors: An anchorage for functional protein networks. FEBS Letters, 546, 65–72.

    Article  CAS  Google Scholar 

  131. Hall, R. A., Premont, R. T., Chow, C. W., Blitzer, J. T., Pitcher, J. A., Claing, A., Stoffel, R. H., Barak, L. S., Shenolikar, S., Weinman, E. J., Grinstein, S., & Lefkowitz, R. J. (1998). The beta2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange. Nature, 392, 626–630.

    Article  CAS  Google Scholar 

  132. Mahon, M. J., Donowitz, M., Yun, C. C., & Segre, G. V. (2002). Na(+)/H(+) exchanger regulatory factor 2 directs parathyroid hormone 1 receptor signaling. Nature, 417, 858–861.

    Article  CAS  Google Scholar 

  133. Mahon, M. J., & Segre, G. V. (2004). Stimulation by PTH of a NHERF-1 assembled complex consisting of the parathyroid hormone I receptor, PLC-beta and actin increases intracellular calcium in OK cells. Journal of Biological Chemistry, 279, 23550–23558.

    Google Scholar 

  134. Hu, L. A., Tang, Y., Miller, W. E., Cong, M., Lau, A. G., Lefkowitz, R. J., & Hall, R. A. (2000). Beta 1-Adrenergic receptor association with PSD-95. Inhibition of receptor internalization and facilitation of beta 1-adrenergic receptor interaction with N-methyl-d-aspartate receptors. Journal of Biological Chemistry, 275, 38659–38666.

    Article  CAS  Google Scholar 

  135. Xu, J., Paquet, M., Lau, A. G., Wood, J. D., Ross, C. A., & Hall, R. A. (2001). Beta 1-Adrenergic receptor association with the synaptic scaffolding protein membrane-associated guanylate kinase inverted-2 (MAGI-2). Differential regulation of receptor internalization by MAGI-2 and PSD-95. Journal of Biological Chemistry, 276., 41310–41317.

    Article  Google Scholar 

  136. Zitzer, H., Honck, H. H., Bachner, D., Richter, D., & Kreienkamp, H. J. (1999). Somatostatin receptor interacting protein defines a novel family of multidomain proteins present in human and rodent brain. Journal of Biological Chemistry, 274, 32997–33001.

    Article  CAS  Google Scholar 

  137. Boudin, H., Doan, A., Xia, J., Shigemoto, R., Huganir, R. L., Worley, P., & Craig, A. M. (2000). Presynaptic clustering of mGluR7a requires the PICK1 PDZ domain binding site. Neuron, 28, 485–497.

    Article  CAS  Google Scholar 

  138. Perroy, J., Prezeau, L., De Waard, M., Shigemoto, R., Bockaert, J., & Fagni, L. (2000). Selective blockade of P/Q-type calcium channels by the metabotropic glutamate receptor type 7 involves a phospholipase C pathway in neurons. Journal of Neuroscience, 20, 7896–7904.

    CAS  Google Scholar 

  139. Becamel, C., Figge, A., Poliak, S., Dumuis, A., Peles, E., Bockaert, J., Lubbert, H., & Ullmer, C. (2001). Interaction of serotonin 5-hydroxytryptamine type 2C receptors with PDZ10 of the multi-PDZ domain protein MUPP1. Journal of Biological Chemistry, 276, 12974–12982.

    Article  CAS  Google Scholar 

  140. Smith, F. D., Oxford, G. S., & Milgram, S. L. (1999). Association of the D2 dopamine receptor third cytoplasmic loop with spinophilin, a protein phosphatase-1-interacting protein. Journal of Biological Chemistry, 274, 19894–19900.

    Article  CAS  Google Scholar 

  141. Richman, J. G., Brady, A. E., Wang, Q., Hensel, J. L., Colbran, R. J., & Limbird, L. E. (2001). Agonist-regulated Interaction between alpha2-adrenergic receptors and spinophilin. Journal of Biological Chemistry, 276, 15003–15008.

    Article  CAS  Google Scholar 

  142. Fagni, L., Worley, P. F., & Ango, F. (2002). Homer as both a scaffold and transduction molecule. Sciences STKE, 2002(137), RE8.

  143. Ciruela, F., Soloviev, M. M., & McIlhinney, R. A. (1999). Co-expression of metabotropic glutamate receptor type 1alpha with homer-1a/Vesl-1S increases the cell surface expression of the receptor. Biochemical Journal, 341, 795–803.

    Article  CAS  Google Scholar 

  144. Bermak, J. C., Li, M., Bullock, C., & Zhou, Q. Y. (2001). Regulation of transport of the dopamine D1 receptor by a new membrane-associated ER protein. Nature Cell Biology, 3, 492–498.

    Article  CAS  Google Scholar 

  145. Tai, A. W., Chuang, J. Z., Bode, C., Wolfrum, U., & Sung, C. H. (1999). Rhodopsin’s carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell, 97, 877–887.

    Article  CAS  Google Scholar 

  146. Sung, C. H., Makino, C., Baylor, D., & Nathans, J. (1994). A rhodopsin gene mutation responsible for autosomal dominant retinitis pigmentosa results in a protein that is defective in localization to the photoreceptor outer segment. Journal of Neuroscience, 14, 5818–5833.

    CAS  Google Scholar 

  147. Shih, M., Lin, F., Scott, J. D., Wang, H. Y., & Malbon, C. C. (1999). Dynamic complexes of beta2-adrenergic receptors with protein kinases and phosphatases and the role of gravin. Journal of Biological Chemistry, 274, 1588–1595.

    Article  CAS  Google Scholar 

  148. Fraser, I. D., Cong, M., Kim, J., Rollins, E. N., Daaka, Y., Lefkowitz, R. J., & Scott, J. D. (2000). Assembly of an A kinase-anchoring protein-beta(2)-adrenergic receptor complex facilitates receptor phosphorylation and signaling. Current Biology, 10, 409–412.

    Article  CAS  Google Scholar 

  149. Cong, M., Perry, S. J., Lin, F. T., Fraser, I. D., Hu, L. A., Chen, W., Pitcher, J. A., Scott, J. D., & Lefkowitz, R. J. (2001). Regulation of membrane targeting of the G protein-coupled receptor kinase 2 by protein kinase A and its anchoring protein AKAP79. Journal of Biological Chemistry, 276, 15192–15199.

    Article  CAS  Google Scholar 

  150. Lopez-Ilasaca, M., Liu, X., Tamura, K., & Dzau, V. J. (2003). The angiotensin II type I receptor-associated protein, ATRAP, is a transmembrane protein and a modulator of angiotensin II signaling. Molecular Biology of the Cell, 14, 5038–5050.

    Article  CAS  Google Scholar 

  151. O’Connor, V., El Far, O., Bofill-Cardona, E., Nanoff, C., Freissmuth, M., Karschin, A., Airas, J. M., Betz, H., & Boehm, S. (1999). Calmodulin dependence of presynaptic metabotropic glutamate receptor signaling. Science, 286, 1180–1184.

    Article  CAS  Google Scholar 

  152. Li, M., Bermak, J. C., Wang, Z. W., & Zhou, Q. Y. (2000). Modulation of dopamine D(2) receptor signaling by actin-binding protein (ABP-280). Molecular Pharmacology, 57, 446–452.

    CAS  Google Scholar 

  153. Hasegawa, H., Katoh, H., Fujita, H., Mori, K., & Negishi, M. (2000). Receptor isoform-specific interaction of prostaglandin EP3 receptor with muskelin. Biochemical and Biophysical Research Communications, 276, 350–354.

    Article  CAS  Google Scholar 

  154. Prezeau, L., Richman, J. G., Edwards, S. W., & Limbird, L. E. (1999). The zeta isoform of 14-3-3 proteins interacts with the third intracellular loop of different alpha2-adrenergic receptor subtypes. Journal of Biological Chemistry, 274, 13462–13469.

    Article  CAS  Google Scholar 

  155. Couve, A., Kittler, J. T., Uren, J. M., Calver, A. R., Pangalos, M. N., Walsh, F. S., & Moss, S. J. (2001). Association of GABA(B) receptors and members of the 14-3-3 family of signaling proteins. Molecular and Cellular Neuroscience, 17, 317–328.

    Article  CAS  Google Scholar 

  156. Kryiakis, J. M., & Avruch, J. (1996). Sounding the alarm: Protein kinase cascades activated by stress and inflammation. Journal of Biological Chemistry, 271, 24313–24316.

    Article  Google Scholar 

  157. Pearson, G., Robinson, F., Beers Gibson, T., Xu, B.-E., Karandikar, M., Berman, K., & Cobb, M. H. (2001). Mitogen-activated protein (MAP) kinase pathways: Regulation and physiologic functions. Endocrine Reviews, 22, 153–183.

    Article  CAS  Google Scholar 

  158. van Biesen, T., Hawes, B. E., Luttrell, D. K., Krueger, K. M., Touhara, K., Porfiri, E., Sakaue, M., Luttrell, L. M., & Lefkowitz, R. J. (1995). Receptor-tyrosine-kinase- and Gβγ-mediated MAP kinase activation by a common signaling pathway. Nature, 376, 781–784.

    Article  Google Scholar 

  159. Luttrell, L. M., Hawes, B. E., van Biesen, T., Luttrell, D. K., Lansing, T. J. & Lefkowitz, R. J. (1996). Role of c-Src in G protein-coupled receptor-, Gβγ subunit-mediated activation of mitogen activated protein kinases. Journal of Biological Chemistry, 271, 19443–19450.

    Google Scholar 

  160. Hackel, P. O., Zwick, E., Prenzel, N., & Ullrich, A. (1999). Epidermal growth factor receptors: Critical mediators of multiple receptor pathways. Current Opinion in Cell Biology, 11, 184–189.

    Article  CAS  Google Scholar 

  161. Shah, B. H., & Catt, K. J. (2004). GPCR-mediated transactivation of RTKs in the CNS: Mechanisms and consequences. Trends in Neurosciences, 27, 48–53.

    Article  CAS  Google Scholar 

  162. Prenzel, N., Zwick, E., Daub, H., Leserer, M., Abraham, R., Wallasch, C., & Ullrich, A. (1999). EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature, 402, 884–888.

    CAS  Google Scholar 

  163. Schafer, B., Gschwind, A., & Ullrich, A. (2004). Multiple G-protein-coupled receptor signals converge on the epidermal growth factor receptor to promote migration and invasion. Oncogene, 23, 991–999.

    Article  CAS  Google Scholar 

  164. Yart, A., Roche, S., Wetzker, R., Laffargue, M., Tonks, N., Mayeux, P., Chap, H., & Raynal, P. (2002). A function for phosphoinositide 3-kinase beta lipid products in coupling beta gamma to Ras activation in response to lysophosphatidic acid. Journal of Biological Chemistry, 277, 21167–21178.

    Article  CAS  Google Scholar 

  165. Luttrell, L. M., Della Rocca, G. J., van Biesen, T., Luttrell, D. K., & Lefkowitz, R. J. (1997). Gβγ subunits mediate Src-dependent phosphorylation of the epidermal growth factor receptor. Journal of Biological Chemistry, 272, 4637–4644.

    Article  CAS  Google Scholar 

  166. Pierce, K. L., Tohgo, A., Ahn, S., Field, M. E., Luttrell, L. M., & Lefkowitz, R. J. (2001). Epidermal growth factor receptor dependent ERK activation by G protein-coupled receptors: A co-culture system for identifying intermediates upstream and downstream of HB-EGF shedding. Journal of Biological Chemistry, 276, 23155–23165.

    Article  CAS  Google Scholar 

  167. Sahin, U., Weskamp, G., Kelly, K., Zhou, H.-M., Higashiyama, S., Peschon, J., Hartmann, D., Saftig, P., & Blobel, C. (2004). Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. Journal of Cell Biology, 164, 769–779.

    Article  CAS  Google Scholar 

  168. Asakura, M., Kitakaze, M., Takashima, S., Liao, Y., Ishikura, F., Yoshinaka, T., Ohmoto, H., Node, K., Yoshino, K., Ishiguro, H., Asanuma, H., Sanada, S., Matsumura, Y., Takeda, H., Beppu, S., Tada, M., Hori, M., & Higashiyama, S. (2002). Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: Metalloproteinase inhibitors as a new therapy. Nature Medicine, 8, 35–40.

    Article  CAS  Google Scholar 

  169. Maudsley, S., Pierce, K. L., Zamah, A. M., Miller, W. E., Ahn, S. E., Daaka, Y., Lefkowitz, R. J., & Luttrell, L. M. (2000). The β2-adrenergic receptor mediates MAP kinase activation via assembly of a multireceptor complex including the EGF receptor. Journal of Biological Chemistry, 275, 9572–9580.

    Article  CAS  Google Scholar 

  170. Gschwind, A., Zwick, E., Prenzel, N., Leserer, M., & Ullrich, A. (2001). Cell communication networks: Epidermal growth factor receptor transactivation as the paradigm for interreceptor signal transmission. Oncogene, 20, 1594–1600.

    Article  CAS  Google Scholar 

  171. Murasawa, S., Mori, Y., Nozawa, Y., Gotoh, N., Shibuya, M., Masaki, H., Maruyama, K., Tsutsumi, Y., Moriguchi, Y., Shibazaki, Y., Tanaka, Y., Iwasaka, T., Inada, M., & Matsubara, H. (1998). Angiotensin II type 1 receptor-induced extracellular signal-regulated protein kinase activation is mediated by Ca2+/calmodulin-dependent transactivation of epidermal growth factor receptor. Circulation Research, 82, 1338–48.

    CAS  Google Scholar 

  172. Castagliuolo, I., Valenick, L., Liu, J., & Pothoulakis, C. (2000). Epidermal growth factor receptor transactivation mediates substance P-induced mitogenic responses in U-373 MG cells. Journal of Biological Chemistry, 275, 26545–26550.

    Article  CAS  Google Scholar 

  173. Lev, S., Moreno, H., Martinez, R., Canoll, P., Peles, E., Musacchio, J. M., Plowman, G. D., Rudy, B., & Schlessinger, J. (1995). Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions. Nature, 376, 737–745.

    Article  CAS  Google Scholar 

  174. Dikic, I., Tokiwa, G., Lev, S., Courtneidge, S. A., & Schlessinger, J. (1996). A role for PYK2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature, 383, 547–550.

    Article  CAS  Google Scholar 

  175. Della Rocca, G. J., Maudsley, S., Daaka, Y., Lefkowitz, R. J., & Luttrell, L. M. (1999). Pleiotropic coupling of G-protein-coupled receptors to the MAP kinase cascade: Role of focal adhesions and receptor tyrosine kinases. Journal of Biological Chemistry, 274, 13978–13984.

    Article  CAS  Google Scholar 

  176. Grewal, J. S., Luttrell, L. M., & Raymond, J. R. (2001). G protein-coupled receptors desensitize and downregulate EGF receptors in renal mesangial cells. Journal of Biological Chemistry, 276, 27335–27344.

    Article  CAS  Google Scholar 

  177. Pak, Y., Pham, N., & Rotin, D. (2002). Direct binding of the beta1 adrenergic receptor to the cyclic AMP-dependent guanine nucleotide exchange factor CNrasGEF leads to Ras activation. Molecular and Cellular Biology, 22, 7942–7952.

    Article  CAS  Google Scholar 

  178. Karoor, V., & Malbon, C. C. (1998). G-protein-linked receptors as substrates for tyrosine kinases: Cross-talk in signaling. Advances in Pharmacology, 42, 425–428.

    CAS  Google Scholar 

  179. Ali, M. S., Sayeski, P. P., Dirksen, L. B., Hayzer, D. J., Marrero, M. B., & Bernstein, K. E. (1997). Dependence on the motif YIPP for the physical association of Jak2 kinase with the intracellular carboxyl tail of the angiotensin II AT1 receptor. Journal of Biological Chemistry, 272, 23382–23388.

    Article  CAS  Google Scholar 

  180. Marrero, M. B., Venema, V. J., Ju, H., Eaton, D. C., & Venema, R. C. (1998). Regulation of angiotensin II-induced JAK2 tyrosine phosphorylation: Roles of SHP-1 and SHP-2. American Journal of Physiology, 275, C1216–23.

    CAS  Google Scholar 

  181. Hunt, R. A., Bhat, G. J., & Baker, K. M. (1999). Angiotensin II-stimulated induction of sis-inducing factor is mediated by pertussis toxin-insensitive G(q) proteins in cardiac myocytes. Hypertension, 34, 603–608.

    CAS  Google Scholar 

  182. Cao, W., Luttrell, L. M., Medvedev, A. V., Pierce, K. L., Daniel, K. W., Dixon, T. M., Lefkowitz, R. J., & Collins, S. (2000). Direct binding of activated c-Src to the beta 3-adrenergic receptor is required for MAP kinase activation. Journal of Biological Chemistry, 275, 38131–38134.

    Article  CAS  Google Scholar 

  183. Miller, W. E., & Lefkowitz, R. J. (2001). Expanding roles for beta-arrestins as scaffolds and adapters in GPCR signaling and trafficking. Current Opinion in Cell Biology, 13, 139–145.

    Article  CAS  Google Scholar 

  184. Perry, S. J., & Lefkowitz, R. J. (2002). Arresting developments in heptahelical receptor signaling and regulation. Trends in Cell Biology, 12, 130–138.

    Article  CAS  Google Scholar 

  185. Tohgo, A., Pierce, K. L., Choy, E. W., Lefkowitz, R. J., & Luttrell, L. M. (2002). Beta-Arrestin scaffolding of the ERK cascade enhances cytosolic ERK activity but inhibits ERK-mediated transcription following angiotensin AT1a receptor stimulation. Journal of Biological Chemistry, 277, 9429–9436.

    Article  CAS  Google Scholar 

  186. Ahn, S., Wei, H., Garrison, T. R., & Lefkowitz, R. J. (2004). Reciprocal regulation of angiotensin receptor-activated extracellular signal-regulated kinases by beta-arrestins 1 and 2. Journal of Biological Chemistry, 279, 7807–7811.

    Article  CAS  Google Scholar 

  187. Azzi, M., Charest, P. G., Angers, S., Rousseau, G., Kohout, T., Bouvier, M., & Pinyero, G. (2003). Beta-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proceedings of the National Academy of Sciences of the United States of America, 100, 11406–11411.

    Article  CAS  Google Scholar 

  188. DeFea, K. A., Zalevsky, J., Thoma, M. S., Dery, O., Mullins, R. D., & Bunnett, N. W. (2000). β-Arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. Journal of Cell Biology, 148, 1267–1281.

    Article  CAS  Google Scholar 

  189. Luttrell, L. M., Roudabush, F. L., Choy, E. W., Miller, W. E., Field, M. E., Pierce, K. L., & Lefkowitz, R. J. (2001). Activation and targeting of extracellular signal-regulated kinases by β-arrestin scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 98, 2449–2454.

    Article  CAS  Google Scholar 

  190. DeFea, K. A., Vaughn, Z. D., O’Bryan, E. M., Nishijima, D., Dery, O., & Bunnett, N. W. (2000). The proliferative and antiapoptotic effects of substance P are facilitated by formation of a β-arrestin-dependent scaffolding complex. Proceedings of the National Academy of Sciences of the United States of America, 97, 11086–11091.

    Article  CAS  Google Scholar 

  191. Jafri, F., El-Shewy, H. M., Luttrell, D. K., & Luttrell, L. M. (2006). Expression of a chimeric neurokinin NK-1 receptor-beta-arrestin 1 fusion protein produces constitutive ERK1/2 activation in HEK-293 cells: Probing the composition and function of the G protein-coupled receptor ‘signalsome’. Journal of Biological Chemistry, 281, 19346–19357.

    Article  CAS  Google Scholar 

  192. Terrillon, S., & Bouvier, M. (2004). Receptor activity-independent recruitment of beta-arrestin2 reveals specific signaling modes. EMBO Journal, 23, 3950–3961.

    Article  CAS  Google Scholar 

  193. Lin, F.-T., Miller, W. E., Luttrell, L. M., & Lefkowitz, R. J. (1999). Feedback regulation of beta-arrestin1 function by extracellular signal-regulated kinases. Journal of Biological Chemistry, 274, 15971–15974.

    Article  CAS  Google Scholar 

  194. Pitcher, J. A., Tesmer, J. J., Freeman, J. L., Capel, W. D., Stone, W. C., & Lefkowitz, R. J. (1999). Feedback inhibition of G protein-coupled receptor kinase 2 (GRK2) activity by extracellular signal-regulated kinases. Journal of Biological Chemistry, 274, 34531–34534.

    Article  CAS  Google Scholar 

  195. Ogier-Denis, E., Pattingre, S., El Benna, J., & Codogno, P. (2000). Erk1/2-dependent phosphorylation of Galpha-interacting protein stimulates its GTPase accelerating activity and autophagy in human colon cancer cells. Journal of Biological Chemistry, 275, 39090–39095.

    Article  CAS  Google Scholar 

  196. Elorza, A., Penela, P., Sarnago, S., & Mayor, F. Jr. (2003). MAPK-dependent degradation of G protein-coupled receptor kinase 2. Journal of Biological Chemistry, 278, 29164–29173.

    Article  CAS  Google Scholar 

  197. Ge, L., Ly, Y., Hollenberg, M., & DeFea, K. (2003). A beta-arrestin-dependent scaffold is associated with prolonged MAPK activation in pseudopodia during protease-activated receptor-2-induced chemotaxis. Journal of Biological Chemistry, 278, 34418–34426.

    Article  CAS  Google Scholar 

  198. Zoudilova, M., Kumar, P., Ge, L., Wang, P., Bokoch, G. M., & DeFea, K. A. (2007). Beta-arrestin-dependent regulation of the cofilin pathway downstream of protease-activated receptor-2. Journal of Biological Chemistry, 282, 20634–20646.

    Article  CAS  Google Scholar 

  199. Fong, A. M., Premont, R. T., Richardson, R. M., Yu, Y. R., Lefkowitz, R. J., & Patel, D. D. (2002). Defective lymphocyte chemotaxis in beta-arrestin2- and GRK6-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 99, 7478–7483.

    Article  CAS  Google Scholar 

  200. Gesty-Palmer, D., El-Shewy, H. M., Kohout, T. A., & Luttrell, L. M. (2005). beta-Arrestin 2 expression determines the transcriptional response to lysophosphatidic acid stimulation in murine embryo fibroblasts. Journal of Biological Chemistry, 280, 32157–32167.

    Article  CAS  Google Scholar 

  201. Shenoy, S. K., Drake, M. T., Nelson, C. D., Houtz, D. A., Xiao, K., Madabushi, S., Reiter, E., Premont, R. T., Lichtarge, O., & Lefkowitz, R. J. (2006). beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. Journal of Biological Chemistry, 281, 1261–1273.

    Article  CAS  Google Scholar 

  202. Shenoy, S. K., & Lefkowitz, R. J. (2005). Receptor-specific ubiquitination of beta-arrestin directs assembly and targeting of seven-transmembrane receptor signalosomes. Journal of Biological Chemistry, 280, 15315–15324.

    Article  CAS  Google Scholar 

  203. Shenoy, S. K., Barak, L. S., Xiao, K., Ahn, S., Berthouze, M., Shukla, A. K., Luttrell, L. M., & Lefkowitz, R. J. (2007). Ubiquitination of beta-arrestin links seven-transmembrane receptor endocytosis and ERK activation. Journal of Biological Chemistry, 282, 29549–29562.

    Article  CAS  Google Scholar 

  204. McDonald, P. H., Chow, C.-W., Miller, W. E., LaPorte, S. A., Field, M. E., Lin, F.-T., Davis, R. J., & Lefkowitz, R. J. (2000). β-Arrestin 2: A receptor-regulated MAPK scaffold for the activation of JNK3. Science, 290, 1574–1577.

    Article  CAS  Google Scholar 

  205. Miller, W. E., McDonald, P. H., Cai, S. F., Field, M. F., Davis, R. J., & Lefkowitz, R. J. (2001). Identification of a motif in the carboxy terminus of β-arrestin2 responsible for activation of JNK3. Journal of Biological Chemistry, 276, 27770–27777.

    Article  CAS  Google Scholar 

  206. Sun, Y., Cheng, Z., Ma, L., & Pei, G. (2002). Beta-arrestin 2 is critically involved in CXCR4-mediateed chemotaxis, and this is mediated by its enhancement of p38 MAPK activation. Journal of Biological Chemistry, 277, 49212–49219.

    Article  CAS  Google Scholar 

  207. Luttrell, L. M., Ferguson, S. S. G., Daaka, Y., Miller, W. E., Maudsley, S., Della Rocca, G. J., Lin, F.-T., Kawakatsu, H., Owada, K., Luttrell, D. K., Caron, M. G., & Lefkowitz, R. J. (1999). β-Arrestin-dependent formation of β2-adrenergic receptor/Src protein kinase complexes. Science, 283, 655–661.

    Article  CAS  Google Scholar 

  208. Barlic, J., Andrews, J. D., Kelvin, A. A., Bosinger, S. E., DeVries, M. E., Xu, L., Dobransky, T., Feldman, R. D., Ferguson, S. S. G., & Kelvin, D. J. (2000). Regulation of tyrosine kinase activation and granule release through β-arrestin by CXCRI. Nature Immunology, 1, 227–233.

    Article  CAS  Google Scholar 

  209. Ghalayini, A. J., Desai, N., Smith, K. R., Holbrook, R. M., Elliott, M. H., & Kawakatsu, H. (2002). Light-dependent association of Src with photoreceptor rod outer segment membrane proteins in vivo. Journal of Biological Chemistry, 277, 1469–1476.

    Article  CAS  Google Scholar 

  210. Milano, S. K., Pace, H. C., Kim, Y. M., Brenner, C., & Benovic, J. L. (2002). Scaffolding functions of arrestin-2 revealed by crystal structure and mutagenesis. Biochemistry, 41, 3321–3328.

    Google Scholar 

  211. Miller, W. E., Maudsley, S., Ahn, S., Kahn, K. D., Luttrell, L. M., & Lefkowitz, R. J. (2000). β-Arrestin1 interacts with the catalytic domain of the tyrosine kinase c-SRC. Journal of Biological Chemistry, 275, 11312–11319.

    Article  CAS  Google Scholar 

  212. Ahn, S., Kim, J., Lucaveche, C. L., Reedy, M. C., Luttrell, L. M., Lefkowitz, R. J., & Daaka, Y. (2002). Src-dependent tyrosine phosphorylation regulates dynamin self-assembly and ligand-induced endocytosis of the epidermal growth factor receptor. Journal of Biological Chemistry, 277, 26642–26651.

    Article  CAS  Google Scholar 

  213. Penela, P., Elorza, A., Sarnage, S., & Mayor, F. Jr. (2001). Beta-arrestin and c-Src-dependent degradation of G-protein-coupled receptor kinase 2. EMBO Journal, 20, 5129–5138.

    Article  CAS  Google Scholar 

  214. Imamura, T., Huang, J., Dalle, S., Ugi, S., Usui, I., Luttrell, L. M., Miller, W. E., Lefkowitz, R. J., & Olefsky, J. M. (2001). Beta-Arrestin-mediated recruitment of the Src family kinase Yes mediates endothelin-1-stimulated glucose transport. Journal of Biological Chemistry, 276, 43663–43667.

    Article  CAS  Google Scholar 

  215. Luttrell, L. M. (2003). Location, Location, Location. Spatial and temporal regulation of MAP kinases by G protein-coupled receptors. Journal of Molecular Endocrinology, 30, 117–126.

    Article  CAS  Google Scholar 

  216. Nelson, C. D., Perry, S. J., Regier, D. S., Prescott, S. M., Topham, M. K., & Lefkowitz, R. J. (2007). Targeting of diacylglycerol degradation to M1 muscarinic receptors by beta-arrestins. Science, 315, 663–666.

    Article  CAS  Google Scholar 

  217. Bhattacharya, M., Anborgh, P. H., Babwah, A. V., Dale, L. B., Dobransky, T., Benovic, J. L., Feldman, R. D., Verdi, J. M., Rylett, R. J., & Ferguson, S. S. (2002). Beta-arrestins regulate a Ral-GDS Ral effector pathway that mediates cytoskeletal reorganization. Nature Cell Biology, 4, 547–555.

    CAS  Google Scholar 

  218. Goel, R., & Baldassare, J. J. (2002). Beta-arrestin 1 couples thrombin to the rapid activation of the Akt pathway. Annals of the New York Academy of Sciences, 973, 138–141.

    CAS  Google Scholar 

  219. Beaulieu, J. M., Sotnikova, T. D., Marion, S., Lefkowitz, R. J., Gainetdinov, R. R., & Caron, M. G. (2005). An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell, 122, 261–273.

    Article  CAS  Google Scholar 

  220. Kang, J., Shi, Y., Xiang, B., Qu, B., Su, W., Zhu, M., Zhang, M., Bao, G., Wang, F., Zhang, X., Yang, R., Fan, F., Chen, X., Pei, G., & Ma, L. (2005). A nuclear function of beta-arrestin1 in GPCR signaling: Regulation of histone acetylation and gene transcription. Cell, 123, 833–847.

    Article  CAS  Google Scholar 

  221. Ma, L., & Pei, G. (2007). Beta-arrestin signaling and regulation of transcription. Journal of Cell Science, 120, 213–218.

    Article  CAS  Google Scholar 

  222. Scott, M. G., Le Rouzic, E., Perianin, A., Pierotti, V., Enslen, H., Benichou, S., Marullo, S., & Benmerah, A. (2002). Differential nucleocytoplasmic shuttling of beta-arrestins. Characterization of a leucine-rich nuclear export sequence in beta-arrestin2. Journal of Biological Chemistry, 277, 37693–37701.

    Article  CAS  Google Scholar 

  223. Wang, P., Wu, Y., Ge, X., Ma, L., & Pei, G. (2003). Subcellular localization of beta-arrestins is determined by their intact N domain and the nuclear export signal at the C terminus. Journal of Biological Chemistry, 278, 11648–11653.

    Article  CAS  Google Scholar 

  224. Witherow, D. S., Garrison, T. R., Miller, W. E., & Lefkowitz, R. J. (2004). Beta-arrestin inhibits NF-kappaB activity by means of its interaction with the NF-kappaB inhibitor IkappaBalpha. Proceedings of the National Academy of Sciences of the United States of America, 101, 8603–8607.

    Article  CAS  Google Scholar 

  225. Fan, H., Luttrell, L. M., Tempel, G. E., Senn, J. J., Halushka, P. V., & Cook, J. A. (2007). β-Arrestins 1 and 2 differentially regulate LPS-induced signaling and pro-inflammatory gene expression. Molecular Immunology, 44, 3092–3099.

    Article  CAS  Google Scholar 

  226. Chen, W., Hu, L. A., Semenov, M. V., Yanagawa, S., Kikuchi, A., Lefkowitz, R. J., & Miller, W. E. (2001). Beta-Arrestin1 modulates lymphoid enhancer factor transcriptional activity through interaction with phosphorylated dishevelled proteins. Proceedings of the National Academy of Sciences of the United States of America, 98, 14889–14894.

    Article  CAS  Google Scholar 

  227. Chen, W., ten Berge, D., Brown, J., Ahn, S., Hu, L. A., Miller, W. E., Caron, M. G., Barak, L. S., Nusse, R., & Lefkowitz, R. J. (2003). Dishevelled 2 recruits beta-arrestin 2 to mediate Wnt5A-stimulated endocytosis of Frizzled 4. Science, 301, 1391–1394.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis M. Luttrell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luttrell, L.M. Reviews in Molecular Biology and Biotechnology: Transmembrane Signaling by G Protein-Coupled Receptors. Mol Biotechnol 39, 239–264 (2008). https://doi.org/10.1007/s12033-008-9031-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-008-9031-1

Keywords

Navigation