Skip to main content

Advertisement

Log in

ID1 affects the efficacy of radiotherapy in glioblastoma through inhibition of DNA repair pathways

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Glioblastoma multiforme (GBM) is characterized by poor therapeutic response and poor overall survival. It is crucial that more effective therapies be developed for the treatment of GBM. Inhibitor of DNA binding protein-1 (ID1) has been shown to maintain the self-renewal capacity of neural stem cells and might be involved in the therapeutic resistance of GBM. In the present study, we explored survival data from the The Cancer Genome Atalas database that were based on ID1 expression for patients diagnosed with primary GBMs. Interestingly, patients with high ID1 expression had better survival than patients with low ID1 expression, and a strong correlation was found between radiotherapy efficacy, ID1 expression, and overall survival. We further investigated the relationship between ID1 expression and the radiosensitivity of glioblastoma using glioblastoma cell lines. The clonogenic formation assay showed that U87 ID1-shRNA cells were much less sensitive to radiation. Moreover, both the results of the γH2AX foci staining assay and the comet assay further revealed that ID1 negatively regulates DNA repair processes by downregulating the expression of genes such as DNA ligase IV (LIG4) and ataxia-telangiectasia-mutated. Additionally, ID1 induces G2/M arrest in U87 cells. Taken together, these results suggest that ID1 may be a new prognostic marker for GBM and have important implications for the therapeutic strategies used to treat GBM patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109.

    Article  PubMed  Google Scholar 

  2. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    Article  PubMed  CAS  Google Scholar 

  3. Patel M, Vogelbaum MA, Barnett GH, Jalali R, Ahluwalia MS. Molecular targeted therapy in recurrent glioblastoma: current challenges and future directions. Expert Opin Investig Drugs. 2012;21(9):1247–66.

    Article  PubMed  CAS  Google Scholar 

  4. Ohka F, Natsume A, Wakabayashi T. Current trends in targeted therapies for glioblastoma multiforme. Neurol Res Int. 2012;2012:1–13.

    Article  Google Scholar 

  5. Bristow RG, Hill RP. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer. 2008;8(3):180–92.

    Article  PubMed  CAS  Google Scholar 

  6. Zhu Y, Hu J, Hu Y, Liu W. Targeting DNA repair pathways: a novel approach to reduce cancer therapeutic resistance. Cancer Treat Rev. 2009;35(7):590–6.

    Article  PubMed  CAS  Google Scholar 

  7. Kyle S, Thomas HD, Mitchell J, Curtin NJ. Exploiting the Achilles heel of cancer: the therapeutic potential of poly(ADP-ribose) polymerase inhibitors in BRCA2-defective cancer. Br J Radiol. 2008;81(1):S6–11.

    Article  PubMed  CAS  Google Scholar 

  8. Evers B, Schut E, van der Burg E, Braumuller TM, Egan DA, Holstege H, et al. A high-throughput pharmaceutical screen identifies compounds with specific toxicity against BRCA2-deficient tumors. Clin Cancer Res. 2010;16(1):99–108.

    Article  PubMed  CAS  Google Scholar 

  9. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003.

    Article  PubMed  CAS  Google Scholar 

  10. Sikder HA, Devlin MK, Dunlap S, Ryu B, Alani RM. Id proteins in cell growth and tumorigenesis. Cancer Cell. 2003;3(6):525–30.

    Article  PubMed  CAS  Google Scholar 

  11. Zhang X, Ling MT, Wang Q, Lau CK, Leung SC, Lee TK, et al. Identification of a novel inhibitor of differentiation-1 (ID-1) binding partner, caveolin-1, and its role in epithelial-mesenchymal transition and resistance to apoptosis in prostate cancer cells. J Biol Chem. 2007;282(46):33284–94.

    Article  PubMed  CAS  Google Scholar 

  12. Anido J, Saez-Borderias A, Gonzalez-Junca A, Rodon L, Folch G, Carmona MA, et al. TGF-beta receptor inhibitors target the CD44(high)/Id1(high) glioma-initiating cell population in human glioblastoma. Cancer Cell. 2010;18(6):655–68.

    Article  PubMed  CAS  Google Scholar 

  13. Ding R, Han S, Lu Y, Guo C, Xie H, Zhang N, et al. Overexpressed Id-1 is associated with patient prognosis and HBx expression in hepatitis B virus-related hepatocellular carcinoma. Cancer Biol Ther. 2010;10(3):299–307.

    Article  PubMed  CAS  Google Scholar 

  14. Dong Z, Liu S, Zhou C, Sumida T, Hamakawa H, Chen Z, et al. Overexpression of Id-1 is associated with tumor angiogenesis and poor clinical outcome in oral squamous cell carcinoma. Oral Oncol. 2010;46(3):154–7.

    Article  PubMed  CAS  Google Scholar 

  15. Geng H, Rademacher BL, Pittsenbarger J, Huang CY, Harvey CT, Lafortune MC, et al. ID1 enhances docetaxel cytotoxicity in prostate cancer cells through inhibition of p21. Cancer Res. 2010;70(8):3239–48.

    Article  PubMed  CAS  Google Scholar 

  16. Meng Q, Jia Z, Wang W, Li B, Ma K, Zhou C. Inhibitor of DNA binding 1 (Id1) induces differentiation and proliferation of mouse embryonic carcinoma P19CL6 cells. Biochem Biophys Res Commun. 2011;412(2):253–9.

    Article  PubMed  CAS  Google Scholar 

  17. Yageta M, Tsunoda H, Yamanaka T, Nakajima T, Tomooka Y, Tsuchida N, et al. The adenovirus E1A domains required for induction of DNA rereplication in G2/M arrested cells coincide with those required for apoptosis. Oncogene. 1999;18(34):4767–76.

    Article  PubMed  CAS  Google Scholar 

  18. Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys. 2004;59(4):928–42.

    Article  PubMed  Google Scholar 

  19. O’Brien CA, Kreso A, Ryan P, Hermans KG, Gibson L, Wang Y, et al. ID1 and ID3 regulate the self-renewal capacity of human colon cancer-initiating cells through p21. Cancer Cell. 2012;21(6):777–92.

    Article  PubMed  Google Scholar 

  20. Ciarrocchi A, Jankovic V, Shaked Y, Nolan DJ, Mittal V, Kerbel RS, et al. Id1 restrains p21 expression to control endothelial progenitor cell formation. PLoS ONE. 2007;2(12):e1338.

    Article  PubMed  Google Scholar 

  21. Prabhu S, Ignatova A, Park ST, Sun XH. Regulation of the expression of cyclin-dependent kinase inhibitor p21 by E2A and Id proteins. Mol Cell Biol. 1997;17(10):5888–96.

    PubMed  CAS  Google Scholar 

  22. Mauro M, Rego MA, Boisvert RA, Esashi F, Cavallo F, Jasin M, et al. p21 promotes error-free replication-coupled DNA double-strand break repair. Nucleic Acids Res. 2012;40(17):8348-60.

    Article  PubMed  CAS  Google Scholar 

  23. Dolezalova D, Mraz M, Barta T, Plevova K, Vinarsky V, Holubcova Z, et al. MicroRNAs regulate p21(Waf1/Cip1) protein expression and the DNA damage response in human embryonic stem cells. Stem cells. 2012;30(7):1362–72.

    Article  PubMed  CAS  Google Scholar 

  24. Koike M, Yutoku Y, Koike A. Accumulation of p21 proteins at DNA damage sites independent of p53 and core NHEJ factors following irradiation. Biochem Biophys Res Commun. 2011;412(1):39–43.

    Article  PubMed  CAS  Google Scholar 

  25. Perk J, Iavarone A, Benezra R. Id family of helix-loop-helix proteins in cancer. Nat Rev. 2005;5(8):603–14.

    Article  CAS  Google Scholar 

  26. Shen Y, Wang Y, Sheng K, Fei X, Guo Q, Larner J, et al. Serine/threonine protein phosphatase 6 modulates the radiation sensitivity of glioblastoma. Cell Death Disease. 2011;2:e241.

    Article  PubMed  CAS  Google Scholar 

  27. Pillai S, Rizwani W, Li X, Rawal B, Nair S, Schell MJ, et al. ID1 facilitates the growth and metastasis of non-small cell lung cancer in response to nicotinic acetylcholine receptor and epidermal growth factor receptor signaling. Mol Cell Biol. 2011;31(14):3052–67.

    Article  PubMed  CAS  Google Scholar 

  28. Jankovic V, Ciarrocchi A, Boccuni P, DeBlasio T, Benezra R, Nimer SD. Id1 restrains myeloid commitment, maintaining the self-renewal capacity of hematopoietic stem cells. Proc Natl Acad Sci USA. 2007;104(4):1260–5.

    Article  PubMed  CAS  Google Scholar 

  29. Barrett LE, Granot Z, Coker C, Iavarone A, Hambardzumyan D, Holland EC, et al. Self-renewal does not predict tumor growth potential in mouse models of high-grade glioma. Cancer Cell. 2012;21(1):11–24.

    Article  PubMed  CAS  Google Scholar 

  30. Li LJ, Zhong LF, Jiang LP, Geng CY, Zou LJ. beta-Elemene radiosensitizes lung cancer A549 cells by enhancing DNA damage and inhibiting DNA repair. Phytother Res. 2011;25(7):1095–7.

    Article  PubMed  CAS  Google Scholar 

  31. Masuda Y, Kamiya K. Molecular nature of radiation injury and DNA repair disorders associated with radiosensitivity. Int J Hematol. 2012;95(3):239–45.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a project aimed at building key clinical disciplines at the hospital (NO.RJ.4101307) and by grants from the Shanghai government (NO.0952nm03900) and Shanghai Jiao Tong University School of Medicine (NO.BXJ201024).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongming Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Q., Guo, P., Mao, Q. et al. ID1 affects the efficacy of radiotherapy in glioblastoma through inhibition of DNA repair pathways. Med Oncol 30, 325 (2013). https://doi.org/10.1007/s12032-012-0325-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-012-0325-6

Keywords

Navigation