Skip to main content

Advertisement

Log in

Expression pattern of ATM and cyclin D1 in ductal carcinoma, normal adjacent and normal breast tissues of Iranian breast cancer patients

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

ATM protein kinase plays a critical role in maintaining genome integrity by activating a biochemical chain reaction that in turn leads to cell cycle checkpoint activation and repair of DNA damage. Cyclin D1 acts in regulating the G1 phase of the cell cycle. Experimental and clinical studies suggest them to be involved in transformation and tumour progression. To elucidate the role of ATM and cyclin D1 expression in sporadic breast cancer, we investigated the possible link between their RNA expression levels in ductal carcinoma and normal adjacent versus normal breast tissues measured by Taqman real-time PCR in 119 breast tissues. Results showed that cyclin D1 over-expressed in 51.4% of breast tumours, whereas ATM expression was down regulated in 55% of breast tumours compared to both normal adjacent and normal controls (P ≤ 0.01). Cyclin D1 expression in adjacent normal and normal tissues was not significantly differed, whereas ATM expression in normal adjacent was lower than normal control (P ≤ 0.01). Over-expression of cyclin D1 correlated with ER+ and/or PR+ (oestrogen/progesterone receptor) status, whereas it mostly under-expressed in HER2+ (human epidermal growth factor 2) tumours. ATM under-expression was more observed in triple-negative tumours (ER, PR and HER2). Our results indicated that reduced expression of the ATM and aberrant cyclin D1 expressions may contribute to the development and/or malignant progression of breast carcinomas also the latter could be involved in the regulation of hormone sensitivity associated with ER and PR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Finnish Cancer Registry. Cancer in Finland 2004 and 2005. Cancer statistics of the national research and development centre for welfare and health. Cancer Society of Finland Publication No. 72. Helsinki; 2007.

  2. Parkin DM. International variations. Oncogene. 2004;23:6329–40.

    Article  PubMed  CAS  Google Scholar 

  3. Lin Y, et al. Active smoking, passive smoking and breast cancer risk: findings from the Japan collaborative cohort study for evaluation of cancer risk. J Epidemiol. 2008;18:77–83.

    Article  PubMed  Google Scholar 

  4. Mousavi SM, et al. Breast cancer in Iran: an epidemiological review. Breast J. 2007;13:383–91.

    Article  PubMed  Google Scholar 

  5. Ministry of Health and Medical Education. Iranian annual national cancer registration report 2005–2006. Ministry of Health and Medical Education, Office of Deputy Minister for Health, Center for Disease Control and Prevention, Cancer Office: Tehran, Iran; 2007.

  6. Behjati F, et al. Prognnostic value of chromosome 1 and 8 copy number in invasive ductal breast carcinoma among Iranian woman: an interphase FISH analysis. Pathol Oncol Res. 2005;11:157–63.

    Article  PubMed  Google Scholar 

  7. Najafi M, Ebrahimi M, Kaviani A, Hashemi E, Montazeri A. Breast conserving surgery versus mastectomy: cancer practice by general surgeons in Iran. BMC cancer. 2005;5:35–39.

    Article  PubMed  Google Scholar 

  8. Peters MG, et al. Prognostic value of cell cycle regulator molecules in surgically resected stage I and II breast cancer. Oncol Rep. 2004;12:1143–50.

    PubMed  CAS  Google Scholar 

  9. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9:153–66.

    Article  PubMed  CAS  Google Scholar 

  10. Weinberg RA. The retinoblastoma protein and cell cycle control. Cell. 1995;81:323–30.

    Article  PubMed  CAS  Google Scholar 

  11. Sherr CJ. Cell cycle control and cancer. Harvey Lect. 2000;96:73–92.

    PubMed  Google Scholar 

  12. Neuma E, et al. Cyclin D1 stimulation of estrogen receptor transcriptional activity independent of cdk4. Mol Cell Biol. 1997;17:5338–47.

    Google Scholar 

  13. Zwijsen RM, et al. CDK-independent activation of estrogen receptor by cyclin D1. Cell. 1997;88:405–15.

    Article  PubMed  CAS  Google Scholar 

  14. Petre CE, Wetherill YB, Danielsen M, Knudsen KE. Cyclin D1: mechanism and consequence of androgen receptor co-repressor activity. J Biol Chem. 2002;277:2207–15.

    Article  PubMed  CAS  Google Scholar 

  15. Landis MW, Pawlyk BS, Li T, Sicinski P, Hinds PW. Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis. Cancer Cell. 2006;9:13–22.

    Article  PubMed  CAS  Google Scholar 

  16. Poikonen P, et al. Cyclin A as a marker for prognosis and chemotherapy response in advanced breast cancer. Br J Cancer. 2005;93:515–9.

    Article  PubMed  CAS  Google Scholar 

  17. Keyomarsi K, et al. Cyclin E and survival in patients with breast cancer. N Engl J Med. 2002;347:1566–75.

    Article  PubMed  CAS  Google Scholar 

  18. Suzuki T, et al. Nuclear cyclin B1 in human breast carcinoma as a potent prognostic factor. Cancer Sci. 2007;98:644–51.

    Article  PubMed  CAS  Google Scholar 

  19. Berns E et al. Oncogene amplification and prognosis in breast cancer: relationship with systemic treatment. Gene (Amst.). 1995; 159:11–18.

    Google Scholar 

  20. Lee A, et al. Expression of c-erbB2, cyclin D1 and estrogen receptor and their clinical implications in the invasive ductal carcinoma of the breast. Jpn J Clin Oncol. 2007;37:708–14.

    Article  PubMed  Google Scholar 

  21. Cho EY, Choi YL, Han JJ, Kim KM, Oh YL. Expression and amplification of Her2, EGFR and cyclin D1 in breast cancer: immunohistochemistry and chromogenic in situ hybridization. Pathol Int. 2008;58:17–25.

    Article  PubMed  Google Scholar 

  22. Aaltonen K, et al. Cyclin D1 expression is associated with poor prognostic features in estrogen receptor positive breast cancer. Breast Cancer Res Treat. 2008;113:75–82.

    Article  PubMed  Google Scholar 

  23. Stoppa-Lyonnet D, et al. Inactivation of the ATM gene in T-cell prolymphocytic leukemias. Blood. 1998;91:3920–6.

    PubMed  CAS  Google Scholar 

  24. Stankovic T, et al. Inactivation of ataxia telangiectasia mutated gene in B-cell chronic lymphocytic leukaemia. Lancet. 1999;353:26–9.

    Article  PubMed  CAS  Google Scholar 

  25. Khanna KK. Cancer risk and the ATM gene: a continuing debate. J Natl Canc Inst. 2000; 92:10.

    Google Scholar 

  26. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔCT) method. Methods. 2001;25:402–8.

    Article  PubMed  CAS  Google Scholar 

  27. Courjal F, et al. Cyclin gene amplification and overexpression in breast and ovarian cancers: evidence for the selection of cyclin D1 in breast and cyclin E in ovarian tumors. Int J Cancer. 1996;69:247–53.

    Article  PubMed  CAS  Google Scholar 

  28. Hosokawa Y, Arnold A. Mechanism of cyclin D1 (CCND1, PRAD1) overexpression in human cancer cells: analysis of allele-specific expression. Genes Chromosome Cancer. 1998;1:66–71.

    Article  Google Scholar 

  29. Barnes DM, Gillett CE. Cyclin D1 in breast cancer. Breast Cancer Res Treat. 1998;52:1–15.

    Article  PubMed  CAS  Google Scholar 

  30. Kenny FS, et al. Overexpression of cyclin D1 messenger RNA predicts for poor prognosis in estrogen receptor-positive breast cancer. Clin Cancer Res. 1999;5:2069–76.

    PubMed  CAS  Google Scholar 

  31. Bièche I, Olivi M, Noguès C, Vidaud M, Lidereau R. Prognostic value of CCND1 gene status in sporadic breast tumours, as determined by real-time quantitative PCR assays. Br J Cancer. 2002;86:580–6.

    Article  PubMed  Google Scholar 

  32. Bärlund M, Kuukasjärvi T, Syrjäkoski K, Auvinen A, Kallioniemi A. Frequent amplification and overexpression of CCND1 in male breast cancer. Int J Cancer. 2004;111:968–71.

    Article  PubMed  Google Scholar 

  33. Sutherland RL, Musgrove EA. Cyclins and breast cancer. J Mammary Gland Biol Neoplasia. 2004;9:95–104.

    Article  PubMed  Google Scholar 

  34. Bienvenu F, et al. Transcriptional role of cyclin D1 in development revealed by a genetic-proteomic screen. Nature. 2010;463:374–8.

    Article  PubMed  CAS  Google Scholar 

  35. Groshong SD, et al. Biphasic regulation of breast cancer cell growth by progesterone: role of the cyclin dependent kinase inhibitors, p21 and p27(Kip1). Mol Endocrinol. 1997;11:1593–607.

    Article  PubMed  CAS  Google Scholar 

  36. Wilcken NR, Prall OW, Musgrove EA, Sutherland RL. Inducible overexpression of cyclin D1 in breast cancer cells reverses the growth-inhibitory effects of antiestrogens. Clin Cancer Res. 1997;3:849–54.

    PubMed  CAS  Google Scholar 

  37. Yang C, et al. Cyclin D1 enhances the response to estrogen and progesterone by regulating progesterone receptor expression. Mol Cell Biol. 2010;30:3111–25.

    Article  PubMed  Google Scholar 

  38. Takano Y, et al. Cyclin D1 overexpression in invasive breast cancers: correlation with cyclin-dependent kinase 4 and oestrogen receptor overexpression, and lack of correlation with mitotic activity. J Cancer Res Clin Oncol. 1999;12:505–12.

    Article  Google Scholar 

  39. Spyratos F, et al. CCND1 mRNA overexpression is highly related to estrogen receptor positivity but not to proliferative markers in primary breast cancer. Int J Biol Markers. 2000;15:210–4.

    PubMed  CAS  Google Scholar 

  40. Utsumi T, et al. Correlation of cyclin D1 mRNA levels with clinico-pathological parameters and clinical outcome in human breast carcinomas. Int J Cancer. 2000;89:39–43.

    Article  PubMed  CAS  Google Scholar 

  41. Musgrove EA, Hui R, Sweeney KJ, Watts CK, Sutherland RL. Cyclins and breast cancer. J Mammary Gland Biol Neoplasia. 1996;1:153–62.

    Article  PubMed  CAS  Google Scholar 

  42. Umekita Y, Ohi Y, Sagara Y, Yoshida H. Overexpression of cyclinD1 predicts for poor prognosis in estrogen receptor-negative breast cancer patients. Int J Cancer. 2002;98:415–8.

    Article  PubMed  CAS  Google Scholar 

  43. Hwang TS, Han HS, Hong YC, Lee HJ, Paik NS. Prognostic value of combined analysis of cyclin D1 and estrogen receptor status in breast cancer patients. Pathol Int. 2003;53:74–80.

    Article  PubMed  CAS  Google Scholar 

  44. Boström P et al. Analysis of cyclins A, B1, D1 and E in breast cancer in relation to tumour grade and other prognostic factors. BioMed Central BMC Res Notes. 2009; 2:140.

    Google Scholar 

  45. Kairouz R, et al. ATM protein synthesis patterns in sporadic breast cancer. Mol Pathol. 1999;52:252–6.

    Article  PubMed  CAS  Google Scholar 

  46. Angèle S, et al. Abnormal expression of the ATM and TP53 genes in sporadic breast carcinomas. Clin Cancer Res. 2000;6:3536–44.

    PubMed  Google Scholar 

  47. Angèle S, Treillex I, Taniere P, Bremond A, Hall J. Altered expression of DNA double strand break detection and repair proteins in breast carcinomas. Histopathology. 2003;43:347–53.

    Article  PubMed  Google Scholar 

  48. Ding SL, et al. Abnormality of the DNA double-strand-break checkpoint/repair genes, ATM, BRCA1 and TP53, in breast cancer is related to tumour grade. Br J Cancer. 2004;90:1995–2001.

    Article  PubMed  CAS  Google Scholar 

  49. Honrado E, et al. Immunohistochemical expression of DNA repair proteins in familial breast cancer differentiate BRCA2-associated tumors. J Clin Oncol. 2005;23:7503–11.

    Article  PubMed  CAS  Google Scholar 

  50. Cuatrecasas M, et al. ATM gene expression is assocaiated with differentiation and angiogenesis in infiltrating breast carcinomas. Histol Histopathol. 2006;21:149–56.

    PubMed  CAS  Google Scholar 

  51. Ye C, et al. Expression patterns of the ATM gene in mammary tissues and their associations with breast cancer survival. Cancer. 2007;109:1729–35.

    Article  PubMed  Google Scholar 

  52. Agrawal A, Murphy RF, Agrawal DK. DNA methylation in breast and colorectal cancers. Mod Pathol. 2007;20:711–21.

    Article  PubMed  CAS  Google Scholar 

  53. Dworkin AM, Huang Tim H-M, Toland AE. Epigenetic alterations in the breast: implications for breast cancer detection, prognosis and treatment. Semin Cancer Biol. 2009;19:165–71.

    Article  PubMed  CAS  Google Scholar 

  54. Vo QN, et al. The ATM gene is a target for epigenetic silencing in locally advanced breast cancer. Oncogene. 2004;23:9432–7.

    Article  PubMed  CAS  Google Scholar 

  55. Kontorovich T, Cohen Y, Nir U, Friedman E. Promoter methylation patterns of ATM, ATR, BRCA1, BRCA2 and p53 as putative cancer risk modifiers in Jewish BRCA1/BRCA2 mutation carriers. Breast Cancer Res Treat. 2009;116:195–200.

    Article  PubMed  CAS  Google Scholar 

  56. Treilleux I, et al. The molecular causes of low ATM protein expression in breast carcinoma; promoter methylation and levels of the catalytic subunit of DNA-dependent protein kinase. Histopathology. 2007;51:63–9.

    Article  PubMed  CAS  Google Scholar 

  57. Tommiska J, et al. The DNA damage signalling kinase ATM is aberrantly reduced or lost in BRCA1/BRCA2-deficient and ER/PR/ERBB2-triple-negative breast cancer. Oncogene. 2008;27:2501–6.

    Article  PubMed  CAS  Google Scholar 

  58. Jeggo PA, Carr AM, Lehmann AR. Splitting the ATM: distinct repair and checkpoint defects in ataxia-telangiectasia. Trends Genet. 1998;14:312–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Research Department of the Faculty of Medical Sciences, Tarbiat Modares University. The authors would like to thank Mrs Esmaili and Miss Abdoli for their technical assistance and all patients contributed in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Mozdarani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salimi, M., Mozdarani, H. & Majidzadeh, K. Expression pattern of ATM and cyclin D1 in ductal carcinoma, normal adjacent and normal breast tissues of Iranian breast cancer patients. Med Oncol 29, 1502–1509 (2012). https://doi.org/10.1007/s12032-011-0043-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-011-0043-5

Keywords

Navigation