Skip to main content

Advertisement

Log in

Everolimus (RAD001) in the treatment of advanced renal cell carcinoma: biology and pathways

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Everolimus (RAD001) is an orally administered inhibitor of the mammalian target of rapamycin (mTOR), an intracellular serine/threonine kinase that regulates protein synthesis and cell growth, proliferation and survival. Dysfunction of mTOR has been implicated in a number of human illnesses including cancer and everolimus is used for a variety of therapeutic indications and is under evaluation in clinical trials for the treatment of cancer. Two phase I studies evaluating the dosing, toxicity, pharmacokinetics, pharmacodynamics and potential biomarkers of everolimus in advanced cancer have been reported. Daily doses of 10 mg and weekly doses of 50 mg of everolimus appear to inhibit relevant therapeutic targets in both tumour tissue and in skin but maximum-tolerated doses of everolimus were not determined formally in these studies. A phase III study of everolimus at 10 mg daily in the treatment of patients with advanced renal cell carcinoma who had failed prior treatment with sorafenib or sunitinib has also been reported. In this study everolimus was generally well tolerated, causing rash, stomatitis and fatigue in approximately a third of patients which generally were not severe. Hyperglycaemia, hypertriglyceridaemia and hypercholesterolaemia were reported in approximately two-thirds of patients but again were easy to manage and mainly of mild or moderate severity. Severe infections and non-infectious pneumonitis were reported in less than 5% of study participants but generally responded to standard therapies. Further work is necessary to define mechanisms of activity and toxicity of everolimus in the treatment of advanced renal cell carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rohde J, Heitman J, Cardenas ME. The TOR kinases link nutrient sensing to cell growth. J Biol Chem. 2001;276(13):9583–6. doi:10.1074/jbc.R000034200.

    Article  PubMed  CAS  Google Scholar 

  2. Easton JB, Houghton PJ. mTOR and cancer therapy. Oncogene. 2006;25(48):6436–46. doi:10.1038/sj.onc.1209886.

    Article  PubMed  CAS  Google Scholar 

  3. Bruyn GA, Tate G, Caeiro F, Maldonado-Cocco J, Westhovens R, Tannenbaum H, et al. Everolimus in patients with rheumatoid arthritis receiving concomitant methotrexate: a 3-month, double-blind, randomised, placebo-controlled, parallel-group, proof-of-concept study. Ann Rheum Dis. 2008;67(8):1090–5. doi:10.1136/ard.2007.078808.

    Article  PubMed  CAS  Google Scholar 

  4. Stone GW, Midei M, Newman W, Sanz M, Hermiller JB, Williams J, et al. Comparison of an everolimus-eluting stent and a paclitaxel-eluting stent in patients with coronary artery disease: a randomized trial. JAMA. 2008;299(16):1903–13. doi:10.1001/jama.299.16.1903.

    Article  PubMed  CAS  Google Scholar 

  5. Campistol JM, Albanell J, Arns W, Boletis I, Dantal J, de Fijter JW, et al. Use of proliferation signal inhibitors in the management of post-transplant malignancies—clinical guidance. Nephrol Dial Transplant. 2007;22(Suppl 1):i36–41. doi:10.1093/ndt/gfm090.

    Article  PubMed  CAS  Google Scholar 

  6. Eisen HJ, Tuzcu EM, Dorent R, Kobashigawa J, Mancini D, Valantine-von Kaeppler HA, et al. Everolimus for the prevention of allograft rejection and vasculopathy in cardiac-transplant recipients. N Engl J Med. 2003;349(9):847–58. doi:10.1056/NEJMoa022171.

    Article  PubMed  CAS  Google Scholar 

  7. Yao JC, Phan AT, Chang DZ, Wolff RA, Hess K, Gupta S, et al. Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low- to intermediate-grade neuroendocrine tumors: results of a phase II study. J Clin Oncol. 2008;26(26):4311–8. doi:10.1200/JCO.2008.16.7858.

    Article  PubMed  Google Scholar 

  8. Jimeno A, Rudek MA, Kulesza P, Ma WW, Wheelhouse J, Howard A, et al. Pharmacodynamic-guided modified continuous reassessment method-based, dose-finding study of rapamycin in adult patients with solid tumors. J Clin Oncol. 2008;26(25):4172–9. doi:10.1200/JCO.2008.16.2347.

    Article  PubMed  CAS  Google Scholar 

  9. Rizzieri DA, Feldman E, Dipersio JF, Gabrail N, Stock W, Strair R, et al. A phase 2 clinical trial of deforolimus (AP23573, MK-8669), a novel mammalian target of rapamycin inhibitor, in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res. 2008;14(9):2756–62. doi:10.1158/1078-0432.CCR-07-1372.

    Article  PubMed  CAS  Google Scholar 

  10. Mita MM, Mita AC, Chu QS, Rowinsky EK, Fetterly GJ, Goldston M, et al. Phase I trial of the novel mammalian target of rapamycin inhibitor deforolimus (AP23573; MK-8669) administered intravenously daily for 5 days every 2 weeks to patients with advanced malignancies. J Clin Oncol. 2008;26(3):361–7. doi:10.1200/JCO.2007.12.0345.

    Article  PubMed  CAS  Google Scholar 

  11. Ansell SM, Inwards DJ, Rowland KM Jr, Flynn PJ, Morton RF, Moore DF Jr, et al. Low-dose, single-agent temsirolimus for relapsed mantle cell lymphoma: a phase 2 trial in the North Central Cancer Treatment Group. Cancer. 2008;113(3):508–14. doi:10.1002/cncr.23580.

    Article  PubMed  CAS  Google Scholar 

  12. Galanis E, Buckner JC, Maurer MJ, Kreisberg JI, Ballman K, Boni J, et al. Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol. 2005;23(23):5294–304. doi:10.1200/JCO.2005.23.622.

    Article  PubMed  CAS  Google Scholar 

  13. Chan S, Scheulen ME, Johnston S, Mross K, Cardoso F, Dittrich C, et al. Phase II study of temsirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. J Clin Oncol. 2005;23(23):5314–22. doi:10.1200/JCO.2005.66.130.

    Article  PubMed  CAS  Google Scholar 

  14. Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356(22):2271–81. doi:10.1056/NEJMoa066838.

    Article  PubMed  CAS  Google Scholar 

  15. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124(3):471–84. doi:10.1016/j.cell.2006.01.016.

    Article  PubMed  CAS  Google Scholar 

  16. Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, et al. A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol. 2008;26(1):127–32. doi:10.1038/nbt1358.

    Article  PubMed  CAS  Google Scholar 

  17. Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet. 2008;372(9637):449–56. doi:10.1016/S0140-6736(08)61039-9.

    Article  PubMed  CAS  Google Scholar 

  18. Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL, et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med. 2003;349(5):427–34. doi:10.1056/NEJMoa021491.

    Article  PubMed  CAS  Google Scholar 

  19. Escudier B, Pluzanska A, Koralewski P, Ravaud A, Bracarda S, Szczylik C, et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet. 2008;370(9605):2103–11. doi:10.1016/S0140-6736(07)61904-7.

    Article  Google Scholar 

  20. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356(2):115–24. doi:10.1056/NEJMoa065044.

    Article  PubMed  CAS  Google Scholar 

  21. Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 2007;356(2):125–34. doi:10.1056/NEJMoa060655.

    Article  PubMed  CAS  Google Scholar 

  22. Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med. 2002;8(2):128–35. doi:10.1038/nm0202-128.

    Article  PubMed  CAS  Google Scholar 

  23. Beuvink I, Boulay A, Fumagalli S, Zilbermann F, Ruetz S, O’Reilly T, et al. The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell. 2005;120(6):747–59. doi:10.1016/j.cell.2004.12.040.

    Article  PubMed  CAS  Google Scholar 

  24. Boulay A, Rudloff J, Ye J, Zumstein-Mecker S, O’Reilly T, Evans DB, et al. Dual inhibition of mTOR and estrogen receptor signaling in vitro induces cell death in models of breast cancer. Clin Cancer Res. 2005;11(14):5319–28. doi:10.1158/1078-0432.CCR-04-2402.

    Article  PubMed  CAS  Google Scholar 

  25. Boulay A, Zumstein-Mecker S, Stephan C, Beuvink I, Zilbermann F, Haller R, et al. Antitumor efficacy of intermittent treatment schedules with the rapamycin derivative RAD001 correlates with prolonged inactivation of ribosomal protein S6 kinase 1 in peripheral blood mononuclear cells. Cancer Res. 2004;64(1):252–61. doi:10.1158/0008-5472.CAN-3554-2.

    Article  PubMed  CAS  Google Scholar 

  26. Peralba JM, DeGraffenried L, Friedrichs W, Fulcher L, Grunwald V, Weiss G, et al. Pharmacodynamic evaluation of CCI-779, an inhibitor of mTOR, in cancer patients. Clin Cancer Res. 2003;9(8):2887–92.

    PubMed  CAS  Google Scholar 

  27. O’Donnell A, Faivre S, Burris HA 3rd, Rea D, Papadimitrakopoulou V, Shand N, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol. 2008;26(10):1588–95. doi:10.1200/JCO.2007.14.0988.

    Article  PubMed  CAS  Google Scholar 

  28. Tabernero J, Rojo F, Calvo E, Burris H, Judson I, Hazell K, et al. Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol. 2008;26(10):1603–10. doi:10.1200/JCO.2007.14.5482.

    Article  PubMed  CAS  Google Scholar 

  29. Tanaka C, O’Reilly T, Kovarik JM, Shand N, Hazell K, Judson I, et al. Identifying optimal biologic doses of everolimus (RAD001) in patients with cancer based on the modeling of preclinical and clinical pharmacokinetic and pharmacodynamic data. J Clin Oncol. 2008;26(10):1596–602.

    PubMed  CAS  Google Scholar 

  30. O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006;66(3):1500–8. doi:10.1158/0008-5472.CAN-05-2925.

    Article  PubMed  CAS  Google Scholar 

  31. Chowdhury S, Harper PG, Choueiri TK. The role of cytoreductive nephrectomy for renal cell carcinoma in the era of targeted therapy. Nat Clin Pract Oncol. 2008;5(12):698–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. G. Larkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larkin, J.M.G., Clarke, R.E.J. & Pickering, L.M. Everolimus (RAD001) in the treatment of advanced renal cell carcinoma: biology and pathways. Med Oncol 26 (Suppl 1), 40–45 (2009). https://doi.org/10.1007/s12032-008-9154-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-008-9154-z

Keywords

Navigation