Skip to main content

Advertisement

Log in

Na+–K+–2Cl Cotransport Inhibitor Attenuates Cerebral Edema Following Experimental Stroke via the Perivascular Pool of Aquaporin-4

  • Translational Research
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Introduction

The Na+–K+–2Cl cotransporter localized in the brain vascular endothelium has been shown to be important in the evolution of cerebral edema following experimental stroke. Previous in vivo studies have demonstrated that bumetanide, a selective Na+–K+–2Cl cotransport inhibitor, attenuates ischemia-evoked cerebral edema. Recently, bumetanide has been shown to also inhibit water permeability via aquaporin-4 (AQP4) expressed in Xenopus laevis oocytes. We tested the hypothesis that the perivascular pool of AQP4 plays a significant role in the anti-edema effect of bumetanide by utilizing wild-type (WT) mice as well as mice with targeted disruption of α-syntrophin (α-Syn−/−) that lack the perivascular pool of AQP4.

Methods

Isoflurane-anesthetized adult male WT C57Bl6 and α-Syn−/− mice were subjected to 90 min middle cerebral artery occlusion (MCAO) followed by 24 or 48 h of reperfusion. Adequacy of MCAO and reperfusion was monitored with laser-Doppler flowmetry over the ipsilateral parietal cortex. Infarct volume (tetrazolium staining), cerebral edema (wet-to-dry ratios), and AQP4 protein expression (immunoblotting) were determined in different treatment groups in separate sets of experiments.

Results

Bumetanide significantly attenuated infarct volume and decreased ipsilateral hemispheric water content in WT mice compared to vehicle treatment. In α-Syn−/− mice, bumetanide treatment had no effect on infarct volume or ischemia-evoked cerebral edema. Bumetanide-treated WT mice had a significant attenuation of AQP4 protein expression at 48 h post-MCAO compared to vehicle-treated WT mice.

Conclusions

These data suggest that bumetanide exerts its neuroprotective and anti-edema effects partly via blockade of the perivascular pool of AQP4 and may have therapeutic potential for ischemic stroke in the clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ayata C, Ropper AH. Ischaemic brain oedema. J Clin Neurosci. 2002;9:113–24.

    Article  PubMed  Google Scholar 

  2. Berrouschot J, Sterker M, Bettin S, Köster J, Schneider D. Mortality of space-occupying (malignant) middle cerebral artery infarction under conservative intensive care. Intensive Care Med. 1998;24:620–3.

    Article  PubMed  CAS  Google Scholar 

  3. Klatzo I. Neuropathological aspects of cerebral edema. J Neuropathol Exp Neurol. 1967;26:1–14.

    Article  PubMed  CAS  Google Scholar 

  4. Bhardwaj A. Osmotherapy in neurocritical care. Curr Neurol Neurosci Rep. 2007;7:513–21.

    Article  PubMed  CAS  Google Scholar 

  5. Kimelberg HK. Current concepts of brain edema. Review of laboratory investigations. J Neurosurg. 1995;83:1051–9.

    Article  PubMed  CAS  Google Scholar 

  6. Menzies SA, Betz AL, Hoff JT. Contributions of ions and albumin to the formation and resolution of ischemic brain edema. J Neurosurg. 1993;78:257–66.

    Article  PubMed  CAS  Google Scholar 

  7. Schielke GP, Moises HC, Betz AL. Blood to brain sodium transport and interstitial fluid potassium concentration during focal ischemia in the rat. J Cereb Blood Flow Metab. 1991;11:466–71.

    PubMed  CAS  Google Scholar 

  8. Zeynalov E, Chen CH, Froehner SC, Adams ME, Ottersen OP, Amiry-Moghaddam M, Bhardwaj A. The perivascular pool of aquaporin-4 mediates the effect of osmotherapy in postischemic cerebral edema. Crit Care Med. 2008;36:2634–40.

    Article  PubMed  CAS  Google Scholar 

  9. King LS, Agre P. Pathophysiology of the aquaporin water channels. Annu Rev Physiol. 1996;58:619–48.

    Article  PubMed  CAS  Google Scholar 

  10. Manley GT, Fujimura M, Ma T, Filiz F, Bollen AW, Chan P, Verkman AS. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med. 2000;6:159–63.

    Article  PubMed  CAS  Google Scholar 

  11. Badaut J, Lasbennes F, Magistretti PJ, Regli L. Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab. 2002;22:367–78.

    Article  PubMed  CAS  Google Scholar 

  12. Vajda Z, Pedersen M, Fuchtbauer EM, Wertz K, Stødkilde-Jørgensen H, Sulyok E, Dóczi T, Neely JD, Agre P, Frøkiaer J, Nielsen S. Delayed onset of brain edema and mislocalization of aquaporin-4 in dystrophin-null transgenic mice. Proc Natl Acad Sci USA. 2002;99:13131–6.

    Article  PubMed  CAS  Google Scholar 

  13. Amiry-Moghaddam M, Otsuka T, Hurn PD, Traystman RJ, Haug FM, Froehner SC, Adams ME, Neely JD, Agre P, Ottersen OP, Bhardwaj A. An α-syntrophin dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci USA. 2003;100:2106–11.

    Article  PubMed  CAS  Google Scholar 

  14. Amiry-Moghaddam M, Xue R, Haug F-M, Neely JD, Bhardwaj A, Agre P, Adams ME, Froehner SC, Mori S, Ottersen OP. Alpha-syntrophin deletion removes the perivascular but not endothelial pool of aquaporin-4 at the blood-brain barrier and delays the development of brain edema in an experimental model of acute hyponatremia. FASEB J. 2004;18:542–4.

    PubMed  CAS  Google Scholar 

  15. Papadopoulos MC, Manley GT, Krishna S, Verkman AS. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J. 2004;18:1291–3.

    PubMed  CAS  Google Scholar 

  16. Frigeri A, Gropper MA, Umenishi F, Kawashima M, Brown D, Verkman AS. Localization of MIWC and GLIP water channel homologs in neuromuscular, epithelial and glandular tissues. J Cell Sci. 1995;108:2993–3002.

    PubMed  CAS  Google Scholar 

  17. Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP. Specialized membrane domains for water transport in glial cells: high resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci. 1997;17:171–80.

    PubMed  CAS  Google Scholar 

  18. Neely JD, Amiry-Moghaddam M, Ottersen OP, Froehner SC, Agre P, Adams ME. Syntrophin-dependent expression and localization of aquaporin-4 water channel protein. Proc Natl Acad Sci USA. 2001;98:14108–13.

    Article  PubMed  CAS  Google Scholar 

  19. Plotkin MD, Cummings BS, Grant DF, Schnellmann RG. Expression of the Na+–K+–2Cl cotransporter BSC2 in the nervous system. Am J Physiol. 1997;272:C173–83.

    PubMed  CAS  Google Scholar 

  20. O’Donnell ME, Tran L, Lam TI, Liu XB, Anderson SE. Bumetanide inhibition of the blood-brain barrier Na–K–Cl cotransporter reduces edema formation in the rat middle cerebral artery occlusion model of stroke. J Cereb Blood Flow Metab. 2004;24:1046–56.

    Article  PubMed  Google Scholar 

  21. O’Donnell ME, Lam TI, Tran LQ, Foroutan S, Anderson SE. Estradiol reduces activity of the blood-brain barrier Na–K–Cl cotransporter and decreases edema formation in permanent middle cerebral artery occlusion. J Cereb Blood Flow Metab. 2006;26:1234–49.

    Article  PubMed  CAS  Google Scholar 

  22. Yuen N, Anderson SE, Glaser N, Tancredi DJ, O’Donnell ME. Cerebral blood flow and cerebral edema in rats with diabetic ketoacidosis. Diabetes. 2008;57:2588–94.

    Article  PubMed  CAS  Google Scholar 

  23. O’Donnell ME, Duong V, Suvatne J, Foroutan S, Johnson DM. Arginine vasopressin stimulation of cerebral microvascular endothelial cell Na–K–Cl cotransporter activity is V1 receptor- and [Ca]-dependent. Am J Physiol Cell Physiol. 2005;289:C283–92.

    Article  PubMed  CAS  Google Scholar 

  24. Foroutan S, Brillault J, Forbush B, O’Donnell ME. Moderate to severe ischemic conditions increase activity and phosphorylation of the cerebral microvascular endothelial cell Na–K–Cl cotransporter. Am J Physiol Cell Physiol. 2005;289:C1492–501.

    Article  PubMed  CAS  Google Scholar 

  25. Yan Y, Dempsey RJ, Flemmer A, Forbush B, Sun D. Inhibition of Na+–K+–Cl cotransporter during focal cerebral ischemia decreases edema and neuronal damage. Brain Res. 2003;961:22–31.

    Article  PubMed  CAS  Google Scholar 

  26. Migliati ER, Meurice N, Dubois P, Fang JS, Somasekharan S, Beckett E, Flynn G, Yool AJ. Inhibition of aquaporin-1 and aquaporin-4 water permeability by a derivative of the loop diuretic bumetanide acting at an internal pore-occluding binding site. Mol Pharm. 2009;76:105–12.

    Article  CAS  Google Scholar 

  27. Sawada M, Alkayed NJ, Goto S, Crain BJ, Traystman RJ, Shaivitz A, Nelson RJ, Hurn PD. Estrogen receptor antagonist ICI182, 780 exacerbates ischemic injury in female mouse. J Cereb Blood Flow Metab. 2000;20:112–8.

    Article  PubMed  CAS  Google Scholar 

  28. Liu X, Zhang W, Alkayed NJ, Adams ME, Amiry-Moghaddam M, Ottersen OP, Hurn PD, Bhardwaj A. Lack of sex-linked differences in cerebral edema and aquaporin-4 expression after experimental stroke. J Cereb Blood Flow Metab. 2008;28:1898–906.

    Article  PubMed  CAS  Google Scholar 

  29. Adams ME, Kramarcy N, Krall SP, Rossi SG, Rotundo RL, Sealock R, Froehner SC. Absence of alpha-syntrophin leads to structurally aberrant neuromuscular synapses deficient in utrophin. J Cell Biol. 2000;150:1385–98.

    Article  PubMed  CAS  Google Scholar 

  30. Yang G, Chan PH, Chen J, Carlson E, Chen SF, Weinstein P, Epstein CJ, Kamii H. Human copper-zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke. 1994;25:165–70.

    PubMed  Google Scholar 

  31. Hara H, Huang PL, Panahian N, Fishman MC, Moskowitz MA. Reduced brain edema and infarction volume in mice lacking the neuronal isoform of nitric oxide synthase after transient MCA occlusion. J Cereb Blood Flow Metab. 1996;16:605–11.

    Article  PubMed  CAS  Google Scholar 

  32. Lin TN, He YY, Wu G, Khan M, Hsu CY. Effect of brain edema on infarct volume in a focal cerebral ischemia model in rats. Stroke. 1993;24:117–21.

    PubMed  CAS  Google Scholar 

  33. Chen C-H, Toung TJK, Sapirstein A, Bhardwaj A. Effect of duration of osmotherapy on blood–brain barrier disruption and regional cerebral edema after experimental stroke. J Cereb Blood Flow and Metab. 2006;26:951–8.

    Article  CAS  Google Scholar 

  34. Toung TJ, Chen CH, Lin C, Bhardwaj A. Osmotherapy with hypertonic saline attenuates water content in brain and extracerebral organs. Crit Care Med. 2007;35:526–31.

    Article  PubMed  Google Scholar 

  35. Ouyang Y, Rosenstein A, Kreiman G, Schuman EM, Kennedy MB. Tetanic stimulation leads to increased accumulation of Ca(2 +)/calmodulin-dependent protein kinase II via dendritic protein synthesis in hippocampal neurons. J Neurosci. 1999;19:7823–33.

    PubMed  CAS  Google Scholar 

  36. Kako K, Wakamatsu H, Hamada T, Banasik M, Ohata K, Niki-Kuroiwa T, Suzuki S, Takeuchi J, Ishida N. Examination of DNA-binding activity of neuronal transcription factors by electrophoretical mobility shift assay. Brain Res Protocols. 1998;2:243–9.

    Article  CAS  Google Scholar 

  37. Yan Y, Dempsey RJ, Sun D. Na+–K+–Cl cotransporter in rat focal cerebral ischemia. J Cereb Blood Flow Metab. 2001;21:711–21.

    Article  PubMed  CAS  Google Scholar 

  38. Haas M. The Na–K–Cl cotransporters. Am J Physiol. 1994;267:C869–85.

    PubMed  CAS  Google Scholar 

  39. Haas M, McManus TJ. Bumetanide inhibits (Na+–K+–2Cl) co-transport at a chloride site. Am J Physiol. 1983;245:C235–40.

    PubMed  CAS  Google Scholar 

  40. Suvitayavat W, Palfrey HC, Haas M, Rao MC. Characterization of the endogenous Na(+)–K(+)–2Cl-cotransporter in Xenopus oocytes. Am J Physiol. 1984;266:C284–92.

    Google Scholar 

  41. Kumar V, Naik RS, Hillert M, Klein J. Effects of chloride flux modulators in an in vitro model of brain edema formation. Brain Res. 2006;1122:222–9.

    Article  PubMed  CAS  Google Scholar 

  42. McClain RM, Dammers KD. Toxicology evaluation of bumetanide, potent diuretic agent. J Clin Pharmacol. 1981;21:543–54.

    PubMed  CAS  Google Scholar 

  43. Frydenlund DS, Bhardwaj A, Otsuka T, Mylonakou MN, Yasumura T, Davidson KG, Zeynalov E, Skare O, Laake P, Haug FM, Rash JE, Agre P, Ottersen OP, Amiry-Moghaddam M. Temporary loss of perivascular aquaporin-4 in neocortex after transient middle cerebral artery occlusion in mice. Proc Natl Acad Sci USA. 2006;103:13532–6.

    Article  PubMed  CAS  Google Scholar 

  44. MacAulay N, Hamann S, Zeuthen T. Water transport in the brain: role of cotransporters. Neuroscience. 2004;129:1031–44.

    Article  PubMed  CAS  Google Scholar 

  45. Hamann S, Herrera-Perez JJ, Bundgaard M, Alvarez-Leefmans FJ, Zeuthen T. Water permeability of Na+–K+–2Cl cotransporters in mammalian epithelial cells. J Physiol. 2005;568:123–35.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Public Health Service NIH grants NS046379 (AB) and NS33145 (SCF, MEA). The authors thank Stepahnie J. Murphy, D.V.M., Ph.D., and Sarah Mader for maintaining the colony for transgenic mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anish Bhardwaj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Migliati, E.R., Amiry-Moghaddam, M., Froehner, S.C. et al. Na+–K+–2Cl Cotransport Inhibitor Attenuates Cerebral Edema Following Experimental Stroke via the Perivascular Pool of Aquaporin-4. Neurocrit Care 13, 123–131 (2010). https://doi.org/10.1007/s12028-010-9376-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-010-9376-8

Keywords

Navigation