Skip to main content
Log in

Trichinella spiralis: shaping the immune response

  • Immunology in Serbia
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The co-evolution of a wide range of helminth parasites and vertebrates represented a constant pressure on the host’s immune system and a selective force for shaping the immune response. Modulation of the immune system by parasites is accomplished partly by dendritic cells. When exposed to helminth parasites or their products, dendritic cells do not become classically mature and are potent inducers of Th2 and regulatory responses. Treating animals with helminths (eggs, larvae, extracts) causes dampening or in some cases prevention of allergic or autoimmune diseases. Trichinella spiralis (T. spiralis) possess a capacity to retune the immune cell repertoire, acting as a moderator of the host response not only to itself but also to third party antigens. In this review, we will focus on the ability of T. spiralis-stimulated dendritic cells to polarize the immune response toward Th2 and regulatory mode in vitro and in vivo and also on the capacity of this parasite to modulate autoimmune disease—such as experimental autoimmune encephalomyelitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Allen JE, Maizels RM. Diversity and dialogue in immunity to helminths. Nat Rev Immunol. 2011;11:375–88.

    Article  PubMed  CAS  Google Scholar 

  2. Matisz CE, McDougall JJ, Sharkey KA, McKay DM. Helminth parasite and the modulation of joint inflammation. J Parasitol Res. 2011;2022:942616.

    Google Scholar 

  3. Fleming JO. Helminths and multiple sclerosis: will old friend give us new treatment for MS? J Neuroimmunol. 2011;233:3–5.

    Article  PubMed  CAS  Google Scholar 

  4. Fleming JO, Issak A, Lee JE, Luzzio CC, Carrithers MD, Cook TD, Field AS, Boland J, Fabry Z. Probiotic helminth administration in relapsing-remiting multiple sclerosis: a phase 1 study. Mult Scler. 2011;17:743–54.

    Article  PubMed  CAS  Google Scholar 

  5. He Y, Li Y, Zhuang W, Lin Y, Chen C, Li J, Chi F, Bai Y, Chen XP. The inhibitory effect against collagen-induced arthritis by Schistosoma japonicum infection is infection stage dependent. BMC Immunol. 2010;11:28–37.

    Article  PubMed  Google Scholar 

  6. McKay DM. The therapeutic helminth? Trends Parasitol. 2009;25:109–14.

    Article  PubMed  Google Scholar 

  7. Reis e Sousa C, Hieny S, Scharton-Kersten T, Jankovic D, Charest H, Germain R, Sher A. In vivo microbial stimulation induces rapid CD40L-independent production of IL-12 by dendritic cells and their re-distribution to T-cell areas. J Exp Med. 1997;186:1819–29.

    Article  PubMed  CAS  Google Scholar 

  8. Maizels RM, Balic A, Gomez-Escobar N, Nair M, Taylor MD, Allen JE. Helminth parasites—masters of regulation. Immunol Rev. 2004;201:89–116.

    Article  PubMed  CAS  Google Scholar 

  9. van Riet E, Everts B, Retra K, Phylipsen M, van Hellemond JJ, Tielens AGM, van der Kleij D, Hartgerts FC, Yazdanbakhsh M. Combined TLR-2 and TLR-4 ligation in the context of bacterial or helminth extracts in human monocyte derived dendritic cells: molecular correlation for Th1/Th2 polarization. BMC Immunol. 2009;10:9–20.

    Article  PubMed  Google Scholar 

  10. Cervi L, MacDonald A, Kane C, Dzierszinski F, Pearce EJ. Cutting edge: dendritic cells copulsed with microbial and helminh antigens undergo modified maturation, segregate the antigens to distinct intracellular compartments, and concurrently induce microbe-specific Th1 and helminth-specific Th2 responses. J Immunol. 2004;172:2016–20.

    PubMed  CAS  Google Scholar 

  11. Whelan M, Harnett MM, Houston KM, Patel V, Harnett W, Rigley KP. Filaral nematode-secreted product signals dendritic cells to acquire a phenotype that drives development of Th2 cells. J Immunol. 2000;164:6453–60.

    PubMed  CAS  Google Scholar 

  12. Balic A, Harcus Y, Holland MJ, Maizels RM. Selective maturation of dendritic cells by Nippostongylus brasiliensis-secreted proteins drives Th2 immune responses. Eur J Immunol. 2004;34:3047–59.

    Article  PubMed  CAS  Google Scholar 

  13. Grainger JR, Smith KA, Hewitson JP, McSorley HJ, Harcus Y, Filbey KJ, Finney CA, Greenwood EJ, Knox DP, Wilson MS, Belkaid Y, Rudensky AY, Maizels RM. Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF-b pathway. J Exp Med. 2010;207:2331–41.

    Article  PubMed  CAS  Google Scholar 

  14. Beiting DP, Gagliardo LF, Hesse M, Bliss SK, Meskill D, Appleton JA. Coordinated control of immunity to muscle stage Trichinella spiralis by IL-10, regulatory T Cells, and TGF-b. J Immunol. 2007;178:1039–47.

    PubMed  CAS  Google Scholar 

  15. Wu Z, Sofronic-Milosavljevic Lj, Nagano, Takahashi Y. Trichinella spiralis: nurse cell formation with emphasis on analogy to muscle cell repair. Parasit Vectors. 2008;1:27.

    Article  PubMed  Google Scholar 

  16. Nagano I, Wu Y, Takahashi Y. Functional genes and proteins of Trichinella spp. Parasitol Res. 2009;104:197–207.

    Article  PubMed  Google Scholar 

  17. Else KJ. Have gastrointestinal nematode outwitted the immune system? Parasite Immunol. 2005;27:407–15.

    Article  PubMed  CAS  Google Scholar 

  18. Mosmann TR. Cytokine secretion patterns and cross-regulation of T cell subsets. Immunol Res. 1991;10:183–8.

    Article  PubMed  CAS  Google Scholar 

  19. Ishikawa N, Goyal PK, Mahida YR, Li FP, Wakelin D. Early cytokine responses during intestinal parasitic infections. Immunology. 1998;93:257–63.

    Article  PubMed  CAS  Google Scholar 

  20. Finney CAM, Taylor MD, Wilson MS, Maizels RM. Expansion and activation of CD4+CD25+ regulatory T cells in Heligmosomoides polygyrus infection. Eur J Immunol. 2007;37:1874–86.

    Article  PubMed  CAS  Google Scholar 

  21. Taylor JJ, Mohrs M, Pearce EJ. Regulatory T cell responses develop in parallel to Th responses, and control the magnitude and phenotype of the Th effector population. J Immunol. 2006;176:5839–47.

    PubMed  CAS  Google Scholar 

  22. Sher A, Pearce E, Kaye P. Shaping the immune response to parasites: role of dendritic cells. Curr Opin Immunol. 2003;15:421–9.

    Article  PubMed  CAS  Google Scholar 

  23. Kane CM, Cervi L, Sun J, McKee AS, Masek KS, Shapira S, Hunter CA, Pearce EJ. Helminth antigens modulate TLR-initiated dendritic cell activation. J Immunol. 2004;173:7454–61.

    PubMed  CAS  Google Scholar 

  24. Segura M, Su Z, Piccirillo C, Stevenson MM. Impairment of dendritic cell function by excretory-secretory products: a potentiaol mechanism for nematode-induced immunosuppression. Eur J Immunol. 2007;37:1887–904.

    Article  PubMed  CAS  Google Scholar 

  25. van Riet E, Hartgers FC, Yazdanbakhsh M. Chronic helminth infections induce immuno-modulation: consequences and mechanisms. Immunobiology. 2007;212:475–90.

    Article  PubMed  Google Scholar 

  26. MacDonald AS, Maizels RM. Allarming dendritic cells for Th2 induction. J Exp Med. 2008;205:13–7.

    Article  PubMed  CAS  Google Scholar 

  27. Ilic N, Colic M, Gruden-Movsesijan A, Majstorovic I, Vasilev S, Sofronic-Milosavljevic Lj. Characterization of rat bone marrow dendritic cells initially primed by Trichinella spiralis antigens. Parasite Immunol. 2008;30:491–5.

    Article  PubMed  CAS  Google Scholar 

  28. Ilic N, Worthington JJ, Gruden-Movsesijan A, Travis MA, Sofronic-Milosavljevic Lj, Grencis RK. Trichinella spiralis antigens prime mixed Th1/Th2 response but do not induce de novo generation of Foxp3+ T cells in vitro. Parasite Immunol. 2011;33:572–82.

    Article  PubMed  CAS  Google Scholar 

  29. Leech MD, Grencis RK. Induction of enhanced immunity to intestinal nematodes using IL-9-producing dendritic cells. J Immunol. 2006;176:2505–11.

    PubMed  CAS  Google Scholar 

  30. Langelaar M, Aranzamendi C, Franssen F, van der Giessen J, Rutten V, van der Ley P, Pinelli E. Suppresion of dendritic cells matiuration by Trichinella spiralis excretory/secretory products. Parasite Immunol. 2009;31:641–5.

    Article  PubMed  CAS  Google Scholar 

  31. Thomas PG, Carter MR, Atochina O, Da’Dara AA, Piskorska D, McGuire E, Harn DA. Maturation of dendritic cell 2 phenotype by a helminth glycan uses a Toll-like receptor 4-dependent mechanism. J Immunol. 2003;171:5837–41.

    PubMed  CAS  Google Scholar 

  32. Jenkins SJ, Mountford AP. Dendritic cells activated with product released by Shistosome larvae drive Th2 type immune response which can be inhibited by manipulation of CD40 costimulation. Infect Immun. 2005;73:395–402.

    Article  PubMed  CAS  Google Scholar 

  33. Marshall FA, Pearce EJ. Uncoupling of induced protein processing from maturation in dendritic cells exposed to a highly antigenic preparation from a helminth parasite. J Immunol. 2008;181:7562–70.

    PubMed  CAS  Google Scholar 

  34. Poncini CV, Soto CDA, Batalla E, Solana ME, Gonzalez Cappa SM. Trypanosoma cruzi induces regulatory dendritic cells in vitro≯. Infect Immun. 2008;76:2633–41.

    Article  PubMed  CAS  Google Scholar 

  35. Bousheri S, Cao H. New insight into the role of dendritic cells in malaria immune pathogenesis. Trends Parasitol. 2008;24:199–200.

    Article  PubMed  CAS  Google Scholar 

  36. Revest M, Donaghy L, Cabilic F, Guiguen C, Gangneux JP. Comparison of the immunomodulatory effects of L. donovani and L. major excreted–secreted antigens, particulate and soluble extracts and viable parasites on human dendritic cells. Vaccine. 2008;26:6119–23.

    Article  PubMed  CAS  Google Scholar 

  37. Wiethe C, Debus A, Mohrs M, Steinkasserer A, Lutz M, Gessner A. Dendritic cell differentiation state and their interaction with NKT cells determine Th1/Th2 differentiation in the murine model of Leishmania major infection1. J Immunol. 2008;180:4371–81.

    PubMed  CAS  Google Scholar 

  38. Manickasingham SP, Edwards AD, Schulz O, Reis e Sousa C. The ability of murine dendritic cell subsets to direct T helper cell differentiation is dependent on microbial signals. Eur J Immunol. 2003;33:101–7.

    Article  PubMed  CAS  Google Scholar 

  39. Chang JH, Kunkel SL, Chang CH. Negative regulation of MyD88-dependent signaling by IL-10 in dendritic cells. PNAS. 2009;106:18327–32.

    Article  PubMed  CAS  Google Scholar 

  40. Xio CQ, Kao KJ. Suppression of interleukin-12 production through endogenously secreted interleukin-10 in activated dendritic cells: involvement of activation of extracellular signal-regulated protein kinase. Scand J Immunol. 2003;58:23–32.

    Article  Google Scholar 

  41. Muthana M, Fairburn B, Mirza S, Slack LK, Hopkinson K, Pockley AG. Identification of a rat bone marrow-derived dendritic cell population which secretes both IL-10 and IL-12: evidence against a reciprocal relationship between IL-10 and IL-12 secretion. Immunobiology. 2006;211:391–402.

    Article  PubMed  CAS  Google Scholar 

  42. Sallusto F, Lanzavecchia A. The instructive role of dendritic cells on T-cell responses. Arthritis Res. 2002;4(suppl3):S127–32.

    Article  PubMed  Google Scholar 

  43. Carvalho LP, Pearce EJ, Scott P. Functional dichotomy of dendritic cells following interaction with Leishmania braziliensis: infected cells produce high levels of TNF-α, whereas bystander dendritic cells are activated to promote T cell responses. J Immunol. 2008;181:6473–80.

    PubMed  CAS  Google Scholar 

  44. Vasquez RE, Xin L, Soong L. Effects of CXCL10 on dendritic cell and CD4+ T-Cell functions during Leishmania amazonensis infection. Infect Immun. 2008;76:161–9.

    Article  PubMed  CAS  Google Scholar 

  45. Shaw J, Grund V, Durling L, Crane D, Caldwell HD. Dendritic cells pulsed with recombinant Chlamydial major outer membrane protein antigen elicit a CD4+ type 2 rather than type 1 immune response that is not protective. Infect Immun. 2002;70:1097–105.

    Article  PubMed  CAS  Google Scholar 

  46. Koyasu S, Moro K, Tanabe M, Takeuchi T. Natural helper cells: a new player in the innate immune response against helminth infection. Adv Immunol. 2010;108:21–44.

    Article  PubMed  CAS  Google Scholar 

  47. Saenz SA, Noti M, Artis D. Innate immune cell populations function as initiators and effectors in Th2 cytokine responses. Trends Immunol. 2010;31:407–13.

    Article  PubMed  CAS  Google Scholar 

  48. MacDonald AS, Arujo AI, Pearce EJ. Immunology of parasitic helminth infections. Infect Immun. 2002;70:427–33.

    Article  PubMed  CAS  Google Scholar 

  49. Gruden-Movsesijan A, Ilic N, Colic M, Majstorovic I, Radovic I, Sofronic-Milosavljevic Lj. The impact of Trichinella spiralis excretory-secretory products on dendritic cells. Comp Immunol Microbiol Infect Dis. 2011;34:429–39.

    Article  PubMed  CAS  Google Scholar 

  50. Gruden-Movsesijan A, Ilic N, Mostarica-Stojkovic M, Stosic-Grujicic S, Milic M, Sofronic-Milosavljevic Lj. Mechanisms of modulation of experimental autoimmune encephalomyelitis by Trichinella spiralis infection in Dark Agouti rats. Parasite Immunol. 2010;32:450–9.

    Article  PubMed  CAS  Google Scholar 

  51. Maldonado RA, von Andrian UH. How tolerogenic dendritic cells induce regulatory T cells. Adv Immunol. 2010;108:111–65.

    Article  PubMed  CAS  Google Scholar 

  52. Babu S, Blauvelt CP, Kumaraswami V, Nutman TB. Regulatory networks induced by live parasites impair both Th1 and Th2 pathways in patent lymphatic filariasis: implications for parasite persistence. J Immunol. 2006;176:3248–56.

    PubMed  CAS  Google Scholar 

  53. Sakagushi S, Ono M, Setoguchi R, Yagi H, Hori S, Fehervari Z, Shimizu J, Takahashi T, Nomura T. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev. 2006;212:8–27.

    Article  Google Scholar 

  54. Okada H, Kuhn C, Feillet H, Bach JF. The “hygiene hypothesis” for autoimmune and allergic diseases: an update. Clin Exp Immunol. 2010;160:1–9.

    Article  PubMed  CAS  Google Scholar 

  55. Rook GAW. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: Darwinian medicine and the ‘hygiene’ or ‘old friends’ hypothesis. Clin Exp Immunol. 2010;160:70–9.

    Article  PubMed  CAS  Google Scholar 

  56. Bach JF. Six questions about the hygiene hypothesis. Cell Immunol. 2005;233:158–61.

    Article  PubMed  CAS  Google Scholar 

  57. Zaccone P, Fehervari Z, Jones FM, Sidobre S, Kronenberg M, Dunne DW, Cooke A. Schistosoma mansoni antigens modulate the activity of the innate immune response and prevent onset of type 1 diabetes. Eur J Immunol. 2003;33:1439–49.

    Article  PubMed  CAS  Google Scholar 

  58. Correale J, Farez M. Association between parasite infection and immune responses in multiple sclerosis. Ann Neurol. 2007;61:97–108.

    Article  PubMed  CAS  Google Scholar 

  59. Zaccone P, Burton OT, Cooke A. Interplay of parasite-driven immune responses and autoimmunity. Trends Parasitol. 2008;24:35–42.

    Article  PubMed  CAS  Google Scholar 

  60. Maizels RM. Infections and allergy—helminths, hygiene and host immune regulation. Curr Opin Immunol. 2005;17:656–61.

    Article  PubMed  CAS  Google Scholar 

  61. Smits HH, Yazdanbakhsh M. Chronic helminth infections modulate allergen-specific immune responses: protection against development of allergic disorders? Ann Med. 2007;39:428–39.

    Article  PubMed  CAS  Google Scholar 

  62. Maizels RM, Yazdanbakhsh M. Immune regulation by helminth parasites: cellular and molecular mechanisms. Nat Rev Immunol. 2003;3:733–44.

    Article  PubMed  CAS  Google Scholar 

  63. Cooke A, Tonks P, Jones FM, O’Shea H, Hutchings P, Fulford AJ, Dunne DW. Infection with Schistosoma mansoni prevents insulin dependent diabetes mellitus in non-obese diabetic mice. Parasite Immunol. 1999;21:169–76.

    Article  PubMed  CAS  Google Scholar 

  64. La Flamme AC, Ruddenklau U, Backstrom BT. Schistosomiasis decreases central nervous system inflammation and alters the progression of experimental autoimmune encephalomyelitis. Infect Immun. 2003;71:4996–5004.

    Article  PubMed  Google Scholar 

  65. Sewell D, Qing Z, Reinke E, Elliott D, Weinstock J, Sandor M, Fabry Z. Immunomodulation of experimental autoimmune encephalomyelitis by helminth ova immunization. Int Immunol. 2003;15:59–69.

    Article  PubMed  CAS  Google Scholar 

  66. Elliott DE, Li J, Blum A, Metwali A, Qadir K, Urban JF Jr, Weinstock JV. Exposure to schistosomiasis eggs protects mice from TNBS-induced colitis. Am J Physiol Gastrointest Liver Physiol. 2003;284:385–91.

    Google Scholar 

  67. Reardon C, Sanchez A, Hogaboam CM, McKay DM. Tapeworm infection reduces epithelial ion transport abnormalities in murine dextran sulfate sodium-induced colitis. Infect Immun. 2001;69:4417–23.

    Article  PubMed  CAS  Google Scholar 

  68. McInnes IB, Leung BP, Harnett M, Gracie JA, Liew FI, Harnett W. A novel therapeutic approach targeting articular inflammation using the filarial nematode-derived phosphorylcholine-containing glycoprotein ES-62. J Immunol. 2003;171:2127–33.

    PubMed  CAS  Google Scholar 

  69. Summers RW, Elliott DE, Qadir K, Urban JF Jr, Thomson R, Weinstock JV. Trichuris suis seems to be safe and possibly effective in the treatment of inflammatory bowel disease. Am J Gastroenterol. 2003;98:2034–41.

    Article  PubMed  Google Scholar 

  70. Summers RW, Elliott DE, Urban JF Jr, Thomson R, Weinstock JV. Trichuris suis therapy in Crohn’s disease. Gut. 2005;54:87–90.

    Article  PubMed  CAS  Google Scholar 

  71. Elliot DE, Satiawan T, Metwali A, Blum A, Urban JF Jr, Weinstock JV. Heligmosomoides polygurus inhibits established colitis in IL10-deficient mice. Eur J Immunol. 2004;34:2690–8.

    Article  Google Scholar 

  72. Khan WI, Blennerhasset PA, Varqhese AK, Chowdhury CK, Omsted P, Deng Y, Collins SM. Intestinal nematode infection ameliorates experimental colitis in mice. Infect Immun. 2002;70:5931–7.

    Article  PubMed  CAS  Google Scholar 

  73. Motomura Y, Wang H, Deng Y, El-Sharkawy RT, Verdu EF, Khan WI. Helminth antigen-based strategy to ameliorate inflammation in an experimental model of colitis. Clin Exp Immunol. 2009;155:88–95.

    Article  PubMed  CAS  Google Scholar 

  74. Saunders KA, Raine T, Cooke A, Lawrence CE. Inhibition of autoimmune type 1 diabetes by gastrointestinal helminth infection. Infect Immun. 2007;75:397–407.

    Article  PubMed  CAS  Google Scholar 

  75. Gruden-Movsesijan A, Ilic N, Mostarica-Stojkovic M, Stosic-Grujicic S, Milic M, Sofronic-Milosavljevic Lj. Trichinella spiralis: modulation of experimental autoimmune encephalomyelitis in DA rats. Exp Parasitol. 2008;188:641–7.

    Article  Google Scholar 

  76. Bettelli E, Nicholson LB, Kuchroo VK. IL-10, a key effector regulatory cytokine in experimental autoimmune encephalomyelitis. J Autoimmun. 2003;20:265–7.

    Article  PubMed  CAS  Google Scholar 

  77. Mangan NE, Fallon RE, Smith P, van Rooijen N, McKenzie AN, Fallon PG. Helminth infection protects mice from anaphylaxis via IL-10-producing B cells. J Immunol. 2004;173:6346–56.

    PubMed  CAS  Google Scholar 

  78. Tang Q, Bluestone JA. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol. 2008;9:239–44.

    Article  PubMed  CAS  Google Scholar 

  79. Anderton SM, Liblau RS. Regulatory T cells in the control of inflammatory demyelinating diseases of the central nervous system. Curr Opin Neurol. 2008;21:248–54.

    Article  PubMed  CAS  Google Scholar 

  80. Hewitson JP, Grainger JR, Maizels RM. Helminth immunoregulation: the role of parasite secreted proteins in modulating host immunity. Mol Biochem Parasitol. 2009;167:1–11.

    Article  PubMed  CAS  Google Scholar 

  81. Gruden-Movsesijan A, Sofronic-Milosavljevic Lj. The involvement of macrophage mannose receptor in the innate immune response to infection with parasite Trichinella spiralis. Vet Immunol Immunoparasitol. 2006;109:57–67.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Ministry of Education and Science, Republic of Serbia [Project 173047]. The authors also thank Dr. David R. Jones for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ljiljana Sofronic-Milosavljevic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilic, N., Gruden-Movsesijan, A. & Sofronic-Milosavljevic, L. Trichinella spiralis: shaping the immune response. Immunol Res 52, 111–119 (2012). https://doi.org/10.1007/s12026-012-8287-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-012-8287-5

Keywords

Navigation