Skip to main content

Advertisement

Log in

The platelet as an immune cell—CD40 ligand and transfusion immunomodulation

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The discovery that platelets possess cell membrane, cytoplasmic, and secreted forms of the co-stimulatory molecule CD40 ligand (CD40L, also known as CD154) has led to a revolution in the view of this anucleate, differentiated cell fragment, previously thought only to be involved in blood clotting (hemostasis). During the last decade, it has become clear that platelets function in innate and adaptive immunity and possess pro-inflammatory, as well as pro-thrombotic properties. They interact not only with other platelets and endothelial cells, but also with lymphocytes, dendritic cells, and structural cells such as fibroblasts. Soluble forms of CD40L (sCD40L) in the human circulation are almost entirely derived from platelets. Elevated levels of CD40L are associated with clinically important conditions, such as vascular disease, abnormal clotting (thrombosis), lung injury, and autoimmune disease. Each year millions of platelet transfusions are given to patients that contain large amounts of sCD40L. sCD40L in the supernatant of stored platelets can induce cytokines, chemokines, and lipid mediators by activating CD40 bearing cells. Increased levels of sCD40L in transfused blood are associated with transfusion-related acute lung injury, a potentially fatal complication, as well as more common, milder transfusion reactions such as fever and rigors. These effects come under the rubric of transfusion immunomodulation, which postulates that transfusion recipient biology, particularly immune function, is dramatically altered by transfusion of stored allogeneic blood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Henn V, Slupsky JR, Grafe M, Anagnostopoulos I, Forster R, Muller-Berghaus G, et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature. 1998;391:591–4.

    Article  CAS  PubMed  Google Scholar 

  2. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767–811.

    Article  CAS  PubMed  Google Scholar 

  3. Kehry MR. CD40-mediated signaling in B cells. Balancing cell survival, growth, and death. J Immunol. 1996;156:2345–8.

    CAS  PubMed  Google Scholar 

  4. Xu H, Zhang X, Mannon RB, Kirk AD. Platelet-derived or soluble CD154 induces vascularized allograft rejection independent of cell-bound CD154. J Clin Invest. 2006;116:769–74.

    Article  CAS  PubMed  Google Scholar 

  5. Graca L, Honey K, Adams E, Cobbold SP, Waldmann H. Cutting edge: anti-CD154 therapeutic antibodies induce infectious transplantation tolerance. J Immunol. 2000;165:4783–6.

    CAS  PubMed  Google Scholar 

  6. Wagner DD. New links between inflammation and thrombosis. Arterioscler Thromb Vasc Biol. 2005;25:1321–4.

    Article  CAS  PubMed  Google Scholar 

  7. Andre P, Nannizzi-Alaimo L, Prasad SK, Phillips DR. Platelet-derived CD40L: the switch-hitting player of cardiovascular disease. Circulation. 2002;106:896–9.

    Article  PubMed  Google Scholar 

  8. Sempowski GD, Chess PR, Phipps RP. CD40 is a functional activation antigen and B7-independent T cell costimulatory molecule on normal human lung fibroblasts. J Immunol. 1997;158:4670–7.

    CAS  PubMed  Google Scholar 

  9. Khan SY, Kelher MR, Heal JM, Blumberg N, Boshkov LK, Phipps R, et al. Soluble CD40 ligand accumulates in stored blood components, primes neutrophils through CD40, and is a potential cofactor in the development of transfusion-related acute lung injury. Blood. 2006;108:2455–62.

    Article  CAS  PubMed  Google Scholar 

  10. Gaspari AA, Sempowski GD, Chess P, Gish J, Phipps RP. Human epidermal keratinocytes are induced to secrete interleukin-6 and co-stimulate T lymphocyte proliferation by a CD40-dependent mechanism. Eur J Immunol. 1996;26:1371–7.

    Article  CAS  PubMed  Google Scholar 

  11. Inwald DP, McDowall A, Peters MJ, Callard RE, Klein NJ. CD40 is constitutively expressed on platelets and provides a novel mechanism for platelet activation. Circ Res. 2003;92:1041–8.

    Article  CAS  PubMed  Google Scholar 

  12. Danese S, Fiocchi C. Platelet activation and the CD40/CD40 ligand pathway: mechanisms and implications for human disease. Crit Rev Immunol. 2005;25:103–21.

    Article  CAS  PubMed  Google Scholar 

  13. Slupsky JR, Kalbas M, Willuweit A, Henn V, Kroczek RA, Muller-Berghaus G. Activated platelets induce tissue factor expression on human umbilical vein endothelial cells by ligation of CD40. Thromb Haemost. 1998;80:1008–14.

    CAS  PubMed  Google Scholar 

  14. Cognasse F, Hamzeh H, Chavarin P, Acquart S, Genin C, Garraud O. Evidence of Toll-like receptor molecules on human platelets. Immunol Cell Biol. 2005;83:196–8.

    Article  CAS  PubMed  Google Scholar 

  15. Andonegui G, Kerfoot SM, McNagny K, Ebbert KV, Patel KD, Kubes P. Platelets express functional Toll-like receptor-4. Blood. 2005;106:2417–23.

    Article  CAS  PubMed  Google Scholar 

  16. Shiraki R, Inoue N, Kawasaki S, Takei A, Kadotani M, Ohnishi Y, et al. Expression of Toll-like receptors on human platelets. Thromb Res. 2004;113:379–85.

    Article  CAS  PubMed  Google Scholar 

  17. Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med. 2007;13:463–9.

    Article  CAS  PubMed  Google Scholar 

  18. Vanichakarn P, Blair P, Wu C, Freedman JE, Chakrabarti S. Neutrophil CD40 enhances platelet-mediated inflammation. Thromb Res. 2008;122:346–58.

    Article  CAS  PubMed  Google Scholar 

  19. Elzey BD, Grant JF, Sinn HW, Nieswandt B, Waldschmidt TJ, Ratliff TL. Cooperation between platelet-derived CD154 and CD4+ T cells for enhanced germinal center formation. J Leukoc Biol. 2005;78:80–4.

    Article  CAS  PubMed  Google Scholar 

  20. Elzey BD, Schmidt NW, Crist SA, Kresowik TP, Harty JT, Nieswandt B, et al. Platelet-derived CD154 enables T-cell priming and protection against Listeria monocytogenes challenge. Blood. 2008;111:3684–91.

    Article  CAS  PubMed  Google Scholar 

  21. Solanilla A, Pasquet JM, Viallard JF, Contin C, Grosset C, Dechanet-Merville J, et al. Platelet-associated CD154 in immune thrombocytopenic purpura. Blood. 2005;105:215–8.

    Article  CAS  PubMed  Google Scholar 

  22. Cognasse F, Chavarin P, Acquart S, Sabido O, Beniguel L, Genin C, et al. Differential downstream effects of CD40 ligation mediated by membrane or soluble CD40L and agonistic Ab: a study on purified human B cells. Int J Immunopathol Pharmacol. 2005;18:65–74.

    CAS  PubMed  Google Scholar 

  23. Cognasse F, Hamzeh-Cognasse H, Lafarge S, Chavarin P, Cogne M, Richard Y, et al. Human platelets can activate peripheral blood B cells and increase production of immunoglobulins. Exp Hematol. 2007;35:1376–87.

    Article  CAS  PubMed  Google Scholar 

  24. Sprague DL, Elzey BD, Crist SA, Waldschmidt TJ, Jensen RJ, Ratliff TL. Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles. Blood. 2008;111:5028–36.

    Article  CAS  PubMed  Google Scholar 

  25. Sprague DL, Sowa JM, Elzey BD, Ratliff TL. The role of platelet CD154 in the modulation in adaptive immunity. Immunol Res. 2007;39:185–93.

    Article  CAS  PubMed  Google Scholar 

  26. Francis CW, Kaplan KL. Principles of antithrombotic therapy. In: Lichtman MA, et al., editors. Williams hematology. 7th ed. New York: McGraw-Hill; 2006. p. 283–300.

    Google Scholar 

  27. Andre P, Prasad KS, Denis CV, He M, Papalia JM, Hynes RO, et al. CD40L stabilizes arterial thrombi by a beta3 integrin-dependent mechanism. Nat Med. 2002;8:247–52.

    Article  CAS  PubMed  Google Scholar 

  28. Prasad KS, Andre P, He M, Bao M, Manganello J, Phillips DR. Soluble CD40 ligand induces beta3 integrin tyrosine phosphorylation and triggers platelet activation by outside-in signaling. Proc Natl Acad Sci USA. 2003;100:12367–71.

    Article  CAS  PubMed  Google Scholar 

  29. Pluvinet R, Olivar R, Krupinski J, Herrero-Fresneda I, Luque A, Torras J, et al. CD40: an upstream master switch for endothelial cell activation uncovered by RNAi-coupled transcriptional profiling. Blood. 2008;112:3624–37.

    Article  CAS  PubMed  Google Scholar 

  30. Phipps RP. CD40: Lord of the endothelial cell. Blood. 2008;112:3531–2.

    Article  CAS  PubMed  Google Scholar 

  31. Chen C, Chai H, Wang X, Jiang J, Jamaluddin MS, Liao D, et al. Soluble CD40 ligand induces endothelial dysfunction in human and porcine coronary artery endothelial cells. Blood. 2008;112:3205–16.

    Article  CAS  PubMed  Google Scholar 

  32. Donners MM, Beckers L, Lievens D, Munnix I, Heemskerk J, Janssen BJ, et al. The CD40-TRAF6 axis is the key regulator of the CD40/CD40L system in neointima formation and arterial remodeling. Blood. 2008;111:4596–604.

    Article  CAS  PubMed  Google Scholar 

  33. Prasad KS, Andre P, Yan Y, Phillips DR. The platelet CD40L/GP IIb-IIIa axis in atherothrombotic disease. Curr Opin Hematol. 2003;10:356–61.

    Article  CAS  PubMed  Google Scholar 

  34. Varo N, Vicent D, Libby P, Nuzzo R, Calle-Pascual AL, Bernal MR, et al. Elevated plasma levels of the atherogenic mediator soluble CD40 ligand in diabetic patients: a novel target of thiazolidinediones. Circulation. 2003;107:2664–9.

    Article  CAS  PubMed  Google Scholar 

  35. Pignatelli P, Sanguigni V, Lenti L, Loffredo L, Carnevale R, Sorge R, et al. Oxidative stress-mediated platelet CD40 ligand upregulation in patients with hypercholesterolemia: effect of atorvastatin. J Thromb Haemost. 2007;5:1170–8.

    Article  CAS  PubMed  Google Scholar 

  36. Lee SP, Ataga KI, Orringer EP, Phillips DR, Parise LV. Biologically active CD40 ligand is elevated in sickle cell anemia: potential role for platelet-mediated inflammation. Arterioscler Thromb Vasc Biol. 2006;26:1626–31.

    Article  CAS  PubMed  Google Scholar 

  37. Aldinucci D, Poletto D, Nanni P, Degan M, Rupolo M, Pinto A, et al. CD40L induces proliferation, self-renewal, rescue from apoptosis, and production of cytokines by CD40-expressing AML blasts. Exp Hematol. 2002;30:1283–92.

    Article  CAS  PubMed  Google Scholar 

  38. Willimott S, Baou M, Naresh K, Wagner SD. CD154 induces a switch in pro-survival Bcl-2 family members in chronic lymphocytic leukaemia. Br J Haematol. 2007;138:721–32.

    Article  CAS  PubMed  Google Scholar 

  39. Blumberg N, Heal JM. Transfusion immunomodulation. In: Hillyer CD, Silberstein LE, Ness PM, Anderson KC, Roback JD, editors. Blood banking and transfusion medicine. 2nd ed. Philadelphia, PA: Churchill Livingstone Elsevier; 2007. p. 701–12.

    Google Scholar 

  40. Cook D, Crowther M, Meade M, Rabbat C, Griffith L, Schiff D, et al. Deep venous thrombosis in medical-surgical critically ill patients: prevalence, incidence, and risk factors. Crit Care Med. 2005;33:1565–71.

    Article  PubMed  Google Scholar 

  41. Khorana AA, Francis CW, Blumberg N, Culakova E, Refaai M, Lyman GH. Blood transfusions, thrombosis and mortality in hospitalized cancer patients. Arch Intern Med. 2008;168:2377–81.

    Google Scholar 

  42. Spiess BD, Royston D, Levy JH, Fitch J, Dietrich W, Body S, et al. Platelet transfusions during coronary artery bypass graft surgery are associated with serious adverse outcomes. Transfusion. 2004;44:1143–8.

    Article  PubMed  Google Scholar 

  43. Kenton AB, Hegemier S, Smith EO, O’Donovan DJ, Brandt ML, Cass DL, et al. Platelet transfusions in infants with necrotizing enterocolitis do not lower mortality but may increase morbidity. J Perinatol. 2005;25:173–7.

    Article  PubMed  Google Scholar 

  44. Phipps RP, Kaufman J, Blumberg N. Platelet derived CD154 (CD40 ligand) and febrile responses to transfusion. Lancet. 2001;357:2023–4.

    Article  CAS  PubMed  Google Scholar 

  45. Blumberg N, Phipps RP, Kaufman J, Heal JM. The causes and treatment of reactions to platelet transfusions. Transfusion. 2003;43:291–2. author reply 2.

    Article  PubMed  Google Scholar 

  46. Blumberg N, Gettings KF, Turner C, Heal JM, Phipps RP. An association of soluble CD40 ligand (CD154) with adverse reactions to platelet transfusions. Transfusion. 2006;46:1813–21.

    Article  CAS  PubMed  Google Scholar 

  47. Kaufman J, Spinelli SL, Schultz E, Blumberg N, Phipps RP. Release of biologically active CD154 during collection and storage of platelet concentrates prepared for transfusion. J Thromb Haemost. 2007;5:788–96.

    Article  CAS  PubMed  Google Scholar 

  48. Blumberg N, Heal JM, Rowe JM. A randomized trial of washed red blood cell and platelet transfusions in adult acute leukemia [ISRCTN76536440]. BMC Blood Disord. 2004;4:6.

    Article  PubMed  Google Scholar 

  49. Blumberg N, Heal JM, Liesveld JL, Phillips GL, Rowe JM. Platelet transfusion and survival in adults with acute leukemia. Leukemia. 2008;22:631–5.

    Article  CAS  PubMed  Google Scholar 

  50. Cognasse F, Boussoulade F, Chavarin P, Acquart S, Fabrigli P, Lamy B, et al. Release of potential immunomodulatory factors during platelet storage. Transfusion. 2006;46:1184–9.

    Article  CAS  PubMed  Google Scholar 

  51. Skripchenko A, Kurtz J, Moroff G, Wagner SJ. Platelet products prepared by different methods of sedimentation undergo platelet activation differently during storage. Transfusion. 2008;48:1469–77.

    Article  PubMed  Google Scholar 

  52. Rogers MA, Blumberg N, Heal JM, Hicks GL Jr. Increased risk of infection and mortality in women after cardiac surgery related to allogeneic blood transfusion. J Womens Health (Larchmt). 2007;16:1412–20.

    Article  Google Scholar 

  53. Aiboshi J, Moore EE, Ciesla CJ, Silliman CC. Blood transfusion and the two-insult model of post-injury multiple organ failure. Shock. 2001;15:302–6.

    Article  CAS  PubMed  Google Scholar 

  54. Rao SV, Jollis JG, Harrington RA, Granger CB, Newby LK, Armstrong PW, et al. Relationship of blood transfusion and clinical outcomes in patients with acute coronary syndromes. JAMA. 2004;292:1555–62.

    Article  CAS  PubMed  Google Scholar 

  55. Paglino JC, Pomper GJ, Fisch GS, Champion MH, Snyder EL. Reduction of febrile but not allergic reactions to RBCs and platelets after conversion to universal prestorage leukoreduction. Transfusion. 2004;44:16–24.

    Article  PubMed  Google Scholar 

  56. Vo TD, Cowles J, Heal JM, Blumberg N. Platelet washing to prevent recurrent febrile reactions to leucocyte-reduced transfusions. Transfus Med. 2001;11:45–7.

    Article  CAS  PubMed  Google Scholar 

  57. Kirkley SA, Cowles J, Pellegrini VD Jr, Harris CM, Boyd AD, Blumberg N. Cytokine secretion after allogeneic or autologous blood transfusion. Lancet. 1995;345:527.

    Article  CAS  PubMed  Google Scholar 

  58. Babcock GF, Alexander JW. The effects of blood transfusion on cytokine production by TH1 and TH2 lymphocytes in the mouse. Transplantation. 1996;61:465–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is in part supported by NHLBI R21HL086367, ES01247, NHLBI R01HL078603, a James P. Wilmot Cancer Center Discovery Fund Seed Grant, Gambro BCT (now Caridian BCT), Inc., Lakewood, CO. We gratefully acknowledge contributions to the research described here by Julia Kaufman, Denise Ray, Stephen Pollock, Joanna Heal, and Kelly Gettings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Blumberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blumberg, N., Spinelli, S.L., Francis, C.W. et al. The platelet as an immune cell—CD40 ligand and transfusion immunomodulation. Immunol Res 45, 251–260 (2009). https://doi.org/10.1007/s12026-009-8106-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-009-8106-9

Keywords

Navigation