Skip to main content
Log in

Xenopus, a unique comparative model to explore the role of certain heat shock proteins and non-classical MHC class Ib gene products in immune surveillance

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The heat shock proteins (HSPs) gp96 and hsp70 can elicit potent anti-tumor responses and as such have significant clinical potential. Besides cytotoxic CD8 T cell (CTLs) effectors, evidence suggests that natural killer (NK) cells and other less well-characterized cell types also play a critical role in HSP-mediated anti-tumor responses. Owing to their high degree of phylogenetic conservation, we have proposed that HSPs are ancestral agents of immune surveillance; and postulated that their immunological properties, if important, should have been conserved during evolution. We are investigating this issue using a unique non-mammalian comparative tumor-immunity model in the frog Xenopus, which allows us to focus on the relationship between HSPs, classical MHC class Ia, and non-classical MHC class Ib molecules. In addition to a transplantable lymphoid tumor in genetically defined cloned Xenopus, we are generating transgenic frogs with inducible or knocked-down (RNAi) gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hendrick JP. Hartl FU molecular chaperone functions of heat-shock proteins. Annu Rev Biochem. 1993;62:349–75.

    Article  CAS  PubMed  Google Scholar 

  2. Srivastava P. Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol. 2002;20:395–425.

    Article  CAS  PubMed  Google Scholar 

  3. Calderwood SK, Theriault JR, Gong J. Message in a bottle: role of the 70-kDa heat shock protein family in anti-tumor immunity. Eur J Immunol. 2005;35:2518–27.

    Article  CAS  PubMed  Google Scholar 

  4. Strbo N, Oizumi S, Sotosek-Tokmadzic V, Podack ER. Perforin is required for innate and adaptive immunity induced by heat shock protein gp96. Immunity. 2003;18:381–90.

    Article  CAS  PubMed  Google Scholar 

  5. Elsner L, Muppala V, Gehrmann M, Lozano J, Malzahn D, Bickeböller H, et al. The heat shock protein HSP70 promotes mouse NK cell activity against tumors that express inducible NKG2D ligands. J Immunol. 2007;179:5523–33.

    CAS  PubMed  Google Scholar 

  6. Robert J, Ménoret A, Basu S, Cohen N, Srivastava P. Phylogenetic conservation of the molecular and immunological properties of the chaperones gp96 and hsp70. Eur J Immunol. 2001;31:186–95.

    Article  CAS  PubMed  Google Scholar 

  7. Baker-LePain JC, Sarzotti M, Fields TA, Li CY, Nicchitta CV. GRP94 (gp96) and GRP94 N-terminal geldanamycin binding domain elicit tissue nonrestricted tumor suppression. J Exp Med. 2002;196:1447–59.

    Article  CAS  PubMed  Google Scholar 

  8. Nicchitta CV. Re-evaluating the role of heat shock protein-peptide interactions in tumor immunity. Nat Rev. 2003;3:427–32.

    Article  CAS  Google Scholar 

  9. Seliger B, Abken H, Ferrone S. HLA-G and MIC expression in tumors and their role in anti-tumor immunity. Trends Immunol. 2003;24:82–7.

    Article  CAS  PubMed  Google Scholar 

  10. Du Pasquier L, Schwager J, Flajnik MF. The immune system of Xenopus. Annu Rev Immunol. 1989;7:251–75.

    Article  CAS  PubMed  Google Scholar 

  11. Greenhalgh P, Olesen C, Steiner L. Characterization and expression of recombination activating genes (Rag-1 and Rag-2) in Xenopus laevis. J Immunol. 1993;151:3100–10.

    CAS  PubMed  Google Scholar 

  12. Chrétien I, Marcuz A, Fellah J, Charlemagne J, Du Pasquier L. The T cell receptor b genes of Xenopus. Eur J Immunol. 1997;26:780–91.

    Article  Google Scholar 

  13. Haynes L, Cohen N. Further characterization of an interleukin-2-like cytokine produced by Xenopus laevis T lymphocytes. Dev Immunol. 1993;3:231–8.

    Article  CAS  PubMed  Google Scholar 

  14. Sato K, Flajnik M, Du Pasquier L, Katagiri M, Kasahara M. Evolution of the MHC: isolation of class II ß-chain cDNA clones from the amphibian Xenopus laevis. J Immunol. 1993;150:2831–43.

    CAS  PubMed  Google Scholar 

  15. Shum BP, Avila D, Du Pasquier L, Kasahara M, Flajnik MF. Isolation of a classical MHC class I cDNA from an amphibian: evidence for only one class I locus in the Xenopus MHC. J Immunol. 1993;151:5376–86.

    CAS  PubMed  Google Scholar 

  16. Flajnik MF, Du Pasquier L, Cohen N. Immune responses of thymus/lymphocyte embryonic chimeras. Studies on tolerance and MHC restriction in Xenopus. Eur J Immunol. 1985;15:540–7.

    Article  CAS  PubMed  Google Scholar 

  17. Harding FA, Flajnik MF, Cohen N. MHC restriction of T cell proliferative responses in Xenopus. Dev Comp Immunol. 1993;17:425–37.

    Article  CAS  PubMed  Google Scholar 

  18. Robert J, Gantress J, Rau L, Bell A, Cohen N. Minor histocompatibility antigen-specific MHC-restricted CD8 T cell responses elicited by heat shock proteins. J Immunol. 2002;168:1697–703.

    CAS  PubMed  Google Scholar 

  19. Kobel HR, Du Pasquier L. Production of large clones of histocompatible, fully identical clawed toads (Xenopus). Immunogenetics. 1975;2:7–91.

    Article  Google Scholar 

  20. Watkins D, Harding F, Cohen N. In vitro proliferation and cytotoxic responses against Xenopus minor histocompatibility antigens. Transplantation. 1988;45:499–502.

    Article  CAS  PubMed  Google Scholar 

  21. Horton J, Manning MJ. Response to skin allografts in Xenopus laevis following thymectomy at early stages of lymphoid organ maturation. Transplantation. 1972;14:141–50.

    Article  CAS  PubMed  Google Scholar 

  22. Robert J, Guiet C, Du Pasquier L. Lymphoid tumors of Xenopus laevis with different capacities for growth in larvae and adults. Dev Immunol. 1994;3:297–307.

    Article  CAS  PubMed  Google Scholar 

  23. Robert J, Guiet C, Du Pasquier L. Ontogeny of the alloimmune response against transplanted tumor in Xenopus laevis. Differentiation. 1995;59:135–44.

    Article  CAS  PubMed  Google Scholar 

  24. Maniero G, Robert J. Phylogenetic conservation of gp96-mediated antigen-specific cellular immunity: new evidence from adoptive cell transfer in Xenopus. Transplantation. 2004;78:1415–22.

    Article  CAS  PubMed  Google Scholar 

  25. Binder R, Han D, Srivastava PK. CD91: a receptor for heat shock protein gp96. Nat Immunol. 2000;1:151–5.

    Article  CAS  PubMed  Google Scholar 

  26. Basu S, Binder R, Ramalingam T, Srivastava PK. CD91 is a common receptor for heat shock protein gp96, hsp90, hsp70, and calreticulin. Immunity. 2001;14:303–13.

    Article  CAS  PubMed  Google Scholar 

  27. Marr S, Goyos A, Gantress J, Maniero GD, Robert J. CD91 up-regulates upon immune stimulation in Xenopus adult but not larval peritoneal leukocytes. Immunogenetics. 2005;56:735–42.

    Article  CAS  PubMed  Google Scholar 

  28. Robert J, Ramanayake T, Maniero G, Morales H, Chida S. Phylogenetic conservation of gp96 ability to interact with CD91 and facilitate antigen cross-presentation. J Immunol. 2008;180:3176–82.

    CAS  PubMed  Google Scholar 

  29. Robert J, Maniero G, Cohen N, Gantress J. Xenopus as an model system to study evolution of HSP-immune system interactions. In: Srivastava P, editor. Methods: a companion to methods in enzymology (HSP-Immune System Interactions) Ed. Academic Press; 2004, vol. 32, p. 42–53.

  30. Goyos A, Gantress J, Cohen N, Robert J. Anti-tumor classical MHC-unrestricted CD8 T-cell cytotoxicity elicited by the heat shock protein gp96. Eur J Immunol. 2004;34:2449–58.

    Article  CAS  PubMed  Google Scholar 

  31. Gomes AQ, Correia DV, Silva-Santos B. Non-classical major histocompatibility complex proteins as determinants of tumour immunosurveillance. EMBO Rep. 2007;8:1024–30.

    Article  CAS  PubMed  Google Scholar 

  32. Salter-Cid L, Nonaka M, Flajnik MF. Expression of MHC class Ia and class Ib during ontogeny: high expression in epithelia and coregulation of class Ia and lmp7 genes. J Immunol. 1998;160:2853–61.

    CAS  PubMed  Google Scholar 

  33. Stewart R, Ohta Y, Minter R, Gibbons T, Horton TL, Ritchie P, et al. Cloning and characterization of Xenopus beta2-microglobulin. Dev Comp Immunol. 2005;29:723–32.

    Article  CAS  PubMed  Google Scholar 

  34. Flajnik MF, Kasahara M, Shum BP, Salter-Cid L, Taylor E, Du Pasquier L. A novel type of class I gene organization in vertebrates: a large family of non-MHC linked class I genes is expressed at the RNA level in the amphibian Xenopus. EMBO J. 1993;12:4385–96.

    CAS  PubMed  Google Scholar 

  35. Goyos A, Guselnikov S, Nedelkovska H, Robert J. Involvement of nonclassical MHC class Ib heat shock protein-mediated anti-tumor responses. Eur J Immunol. 2007;37:1494–501.

    Article  CAS  PubMed  Google Scholar 

  36. Allen BG, Weeks DL. Transgenic X. laevis embryos can be generated using phiC31 integrase. Nat Methods. 2005;2:975–9.

    Article  CAS  PubMed  Google Scholar 

  37. Sinzelle L, Vallin J, Coen L, Chesneau A, Du Pasquier D, Pollet N, et al. Generation of trangenic Xenopus laevis using the sleeping beauty transposon system. Transgenic Res. 2006;15:751–60.

    Article  CAS  PubMed  Google Scholar 

  38. Ogino H, McConnell WB, Grainger RM. Highly efficient transgenesis in Xenopus tropicalis using I-SceI meganuclease. Mech Dev. 2006;123:103–13.

    Article  CAS  PubMed  Google Scholar 

  39. Pan FC, Chen Y, Loeber J, Henningfeld K, Pieler T. I-SceI meganuclease-mediated transgenesis in Xenopus. Dev Dyn. 2006;235:247–52.

    Article  PubMed  CAS  Google Scholar 

  40. Chesneau A, Sachs LM, Chai N, Chen Y, Du Pasquier L, Loeber J, et al. Transgenesis procedures in Xenopus. Biol Cell. 2008;100:503–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The expert animal husbandry provided by Tina Martin and David Albright is gratefully appreciated. This research was supported by NIH F31-AI068610 (A. G.), T32-AI 07285 (H. N.), and R01-CA-108982-02, R24-AI-059830 (J. R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Robert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robert, J., Goyos, A. & Nedelkovska, H. Xenopus, a unique comparative model to explore the role of certain heat shock proteins and non-classical MHC class Ib gene products in immune surveillance. Immunol Res 45, 114–122 (2009). https://doi.org/10.1007/s12026-009-8094-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-009-8094-9

Keywords

Navigation