Skip to main content
Log in

Pheochromocytoma: Rediscovery as a catecholamine-metabolizing tumor

  • Review
  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Catecholamine-producing tumors are rare neoplasms derived mainly from chromaffin cells of the adrenal medulla (pheochromocytomas) or, in about 10% of cases, from paraganglia (paragangliomas). Diagnosis of these tumors relies heavily on measurements of urinary or plasma catecholamines or catecholamine metabolites. The metabolites are usually thought to be produced after release of catecholamines into the bloodstream. This, however, ignores observations of over 40 yr ago that catecholamines are metabolized within pheochromocytoma tumor cells. Development of improved methods for measurement of catecholamine metabolites, in particular, plasma concentrations of free normetanephrine and metanephrine, has reestablished the importance of intratumoral catecholamine metabolism. In patients with pheochromocytoma, over 90% of the elevations in plasma free normetanephrine and metanephrine result from metabolism of catecholamines within pheochromocytoma tumor cells. This process occurs continuously and independently of variations in catecholamine release. As a consequence, measurements of plasma concentrations and urinary outputs of normetanephrine and metanephrine provide more reliable methods for diagnosis of pheochromocytoma than measurements of the parent amines. Rediscovery of the importance of intratumoral catecholamine metabolism is leading to a reevaluation of the procedures used to diagnose pheochromocytoma. This review provides an update on the diagnosis of pheochromocytoma, with emphasis on identifying and correcting relevant misconceptions about catecholamine metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blaschko H, Richter D, Schlossmann H. The inactivation of adrenaline. J Physiol 90:1–17, 1937.

    PubMed  CAS  Google Scholar 

  2. Richter D. The inactivation of adrenaline in vivo in man. J Physiol 98:361–373, 1940.

    PubMed  CAS  Google Scholar 

  3. Armstrong MD, McMillan A. 3-Methoxy-4-hydroxy-d-mandelic acid, a urinary metabolite of norepinephrine. Biochim Biophys Acta 25:422–423, 1957.

    Article  PubMed  CAS  Google Scholar 

  4. Armstrong MD, McMillan A. Studies on the formation of 3-methoxy-4-hydroxy-d-mandelic acid, a urinary metabolite of norepinephrine and epinephrine. Pharmacol Rev 11: 394–401, 1958.

    Google Scholar 

  5. Gitlow SE, Mendlowitz M, Khassis S, Cohen G, Sha J. Diagnosis of pheochromocytoma by determination of urinary 3-methoxy-4-hydroxymandelic acid. J Clin Invest 39:221–226, 1960.

    PubMed  CAS  Google Scholar 

  6. Goldenberg M, Serlin I, Edwards T, Rappaport MM. Chemical screening methods for the diagnosis of pheochromocytoma. Am J Med 16:310–327, 1954.

    Article  PubMed  CAS  Google Scholar 

  7. Axelrod J. O-Methylation of epinephrine and other catechols in vitro and in vivo. Science 126:400–401, 1957.

    Article  PubMed  CAS  Google Scholar 

  8. Landsberg L, Young JB. Physiology and pharmacology of the autonomic nervous system. In: Braunwald E, Fauci AS, Kasper DL, Hauser SL, Longo DL, Jameson JL, eds. Harrison's principles of internal medicine, 15 ed. McGraw-Hill, New York, pp. 439–443, 2001.

    Google Scholar 

  9. Cryer PE. Diseases of the sympathochromaffin system. In: Felig P, Frohman LA, eds. Endocrinology and metabolism, 4 ed. McGraw-Hill, New York, pp 525–551, 2001.

    Google Scholar 

  10. Atlas SA. Endocrine hypertension. In: Massry SG, Glassock RJ, eds. Massry & Glassock's textbook of nephrology, 3 ed. Lippincott Williams & Williams, Philadelphia, pp. 1169–1183, 2001.

    Google Scholar 

  11. Bouloux P-MG. The sympatho-adrenal system, phaeochromocytoma and related tumors. In: Grossman A, ed. Clinical endocrinology, 2 ed. Blackwell Science, Oxford, pp. 497–520, 1998.

    Google Scholar 

  12. O'Connor DT. The adrenal medulla, catecholamines, and pheochromocytoma. In: Goldman L, Bennet JC, eds. The adrenal medulla, catecholamines, and pheochromocytoma, 21 ed. Saunders, Philadelphia, pp. 1257–1262, 2000.

    Google Scholar 

  13. Bravo EL. The adrenal medulla: basic concepts. In: Pinchera A, Bertagna XY, Fischer JA, Groop L, Schoemaker J, Serio M, Wass JAH, Braverman LE, eds. Endocrinology and metabolism. McGraw-Hill International (UK) Ltd, London, pp. 337–339, 2001.

    Google Scholar 

  14. Lenz T, Gossmann J, Schulte KL, Salewski L, Geiger H. Diagnosis of pheochromocytoma. Clin Lab 48:5–18, 2002.

    PubMed  Google Scholar 

  15. LaBrosse EH. Catecholamine metabolism in neuroblastoma: kinetics of conversion of 3H-3-methoxy-4-hydroxyphenylglycol to 3H-3-methoxy-4-hydroxymandelic acid. J Clin Endocrinol Metab 30:580–589, 1970.

    Article  PubMed  CAS  Google Scholar 

  16. Blombery PA, Kopin IJ, Gordon EK, Markey SP, Ebert MH. Conversion of MHPG to vanillylmandelic acid. Implications for the importance of urinary MHPG. Arch Gen Psychiatry 37:1095–1098, 1980.

    PubMed  CAS  Google Scholar 

  17. Mårdh G, Sjoquist B, Anggard E. Norepinephrine metabolism in man using deuterium labelling: the conversion of 4-hydroxy-3-methoxyphenylglycol to 4-hydroxy-3-methoxymandelic acid. J Neurochem 36:1181–1185, 1981.

    Article  PubMed  Google Scholar 

  18. Mårdh G, Änggård E. Norepinephrine metabolism in man using deuterium labelling: origin of 4-hydroxy-3-methoxymandelic acid. J Neurochem 42:43–46, 1984.

    Article  PubMed  Google Scholar 

  19. Mårdh G, Luehr CA, Vallee BL. Human class I alcohol dehydrogenases catalyze the oxidation of glycols in the metabolism of norepinephrine. Proc Natl Acad Sci USA 82: 4979–4982, 1985.

    Article  PubMed  Google Scholar 

  20. Eisenhofer G, Aneman A, Hooper D, Holmes C, Goldstein DS, Friberg P. Production and metabolism of dopamine and norepinephrine in mesenteric organs and liver of swine. Am J Physiol 268:G641–649, 1995.

    PubMed  CAS  Google Scholar 

  21. Eisenhofer G, Aneman A, Hooper D, Rundqvist B, Friberg P. Mesenteric organ production, hepatic metabolism, and renal elimination of norepinephrine and its metabolites in humans. J Neurochem 66:1565–1573, 1996.

    Article  PubMed  Google Scholar 

  22. Eriksson BM, Persson BA. Liquid chromatographic method for the determination of 3,4-dihydroxyphenylethylene glycol and 3,4-dihydroxymandelic acid in plasma. J Chromatogr 386:1–9, 1987.

    Article  PubMed  CAS  Google Scholar 

  23. Eisenhofer G, Goldstein DS, Stull R, Ropchak TG, Keiser HR, Kopin IJ. Dihydroxyphenylglycol and dihydroxymandelic acid during intravenous infusions of noradrenaline. Clin Sci (Lond) 73:123–125, 1987.

    CAS  Google Scholar 

  24. Kawamura M, Kopin IJ, Kador PF, Sato S, Tjurmina O, Eisenhofer G. Effects of aldehyde/aldose reductase inhibition on neuronal metabolism of norepinephrine. J Auton Nerv Syst 66:145–148, 1997.

    Article  PubMed  CAS  Google Scholar 

  25. Breese GR, Chase TN, Kopin IJ. Metabolism of some phenylethylamines and their beta-hydroxylated analogs in brain. J Pharmacol Exp Ther 165:9–13, 1969.

    PubMed  CAS  Google Scholar 

  26. Tabakoff B, Anderson R, Alivisatos SG. Enzymatic reduction of “biogenic” aldehydes in brain. Mol Pharmacol 9:428–437, 1973.

    PubMed  CAS  Google Scholar 

  27. Kawamura M, Eisenhofer G, Kopin IJ, et al. Aldose reductase: an aldehyde scavenging enzyme in the intraneuronal metabolism of norepinephrine in human sympathetic ganglia. Auton Neurosci 96:131–139, 2002.

    Article  PubMed  CAS  Google Scholar 

  28. Kopin IJ. Storage and metabolism of catecholamines: the role of monoamine oxidase. Pharmacol Rev 16:179–191, 1964.

    PubMed  CAS  Google Scholar 

  29. Maas JW, Benensohn H, Landis DH. A kinetic study of the disposition of circulating norepinephrine in normal male subjects. J Pharmacol Exp Ther 174:381–387, 1970.

    PubMed  CAS  Google Scholar 

  30. Eisenhofer G, Friberg P, Rundqvist B, et al. Cardiac sympathetic nerve function in congestive heart failure. Circulation 93:1667–1676, 1996.

    PubMed  CAS  Google Scholar 

  31. Axelrod J, LaBrosse EH, Kety SS. O-Methylation, the principal route of metabolism of epinephrine in man. Science 128:593–594, 1958.

    Article  PubMed  Google Scholar 

  32. LaBrosse EH, Axelrod J, Kopin IJ, Ketty SS. Metabolism of 7-3H-epinephrine-d-bitartate in normal young men. J Clin Invest 40:253–260, 1961.

    PubMed  CAS  Google Scholar 

  33. Kopin IJ, Gordon EK. Metabolism of norepinephrine-3H released by tyramine and reserpine. J Pharmacol 138:351–357, 1962.

    CAS  Google Scholar 

  34. Crout JR. Effect of inhibiting both catechol-O-methyltransferase and monoamine oxidase on cardiovascular responses to norepinephrine. Proc Soc Exp Biol 108:482–484, 1961.

    CAS  PubMed  Google Scholar 

  35. Hertting G, Axelrod J, Kopin IJ, Whitby LG. Lack of uptake of catecholamines after chronic denervation of sympathetic nerves. Nature 189:66–71, 1961.

    Article  PubMed  CAS  Google Scholar 

  36. Iversen LL. The uptake of catecholamines at high perfusion concentrations in the rat isolated heart: a novel catecholamine uptake process. Br J Pharmacol 25:18–23, 1965.

    CAS  Google Scholar 

  37. Eisenhofer G. The role of neuronal and extraneuronal plasma membrane transporters in the inactivation of peripheral catecholamines. Pharmacol Ther 91:35–62, 2001.

    Article  PubMed  CAS  Google Scholar 

  38. Eisenhofer G, Friberg P, Pacak K, et al. Plasma metadrenalines: do they provide useful information about sympatho-adrenal function and catecholamine metabolism? Clin Sci (Lond) 88:533–542, 1995.

    CAS  Google Scholar 

  39. Eisenhofer G, Rundquist B, Aneman A, et al. Regional release and removal of catecholamines and extraneuronal metabolism to metanephrines. J Clin Endocrinol Metab 80:3009–3017, 1995.

    Article  PubMed  CAS  Google Scholar 

  40. Roth JA. Membrane-bound catechol-O-methyltransferase: a reevaluation of its role in the O-methylation of the catecholamine neurotransmitters. Rev Physiol Biochem Pharmacol 120:1–29, 1992.

    PubMed  CAS  Google Scholar 

  41. Eisenhofer G, Keiser H, Friberg P, et al. Plasma metanephrines are markers of pheochromocytoma produced by catechol-O-methyltransferase within tumors. J Clin Endocrinol Metab 83:2175–2185, 1998.

    Article  PubMed  CAS  Google Scholar 

  42. Ellingson T, Duddempudi S, Greenberg BD, Hooper D, Eisenhofer G. Determination of differential activities of soluble and membrane-bound catechol-O-methyltransferase in tissues and erythrocytes. J Chromatogr B Biomed Sci Appl 729:347–353, 1999.

    Article  PubMed  CAS  Google Scholar 

  43. Goldstein DS, Eisenhofer G, Kopin IJ. Sources and significance of plasma levels of catechols and their metabolites in humans. J Pharmacol Exp Ther 305:800–811, 2003.

    Article  PubMed  CAS  Google Scholar 

  44. Cuche JL, Brochier P, Klioua N, et al. Conjugated catecholamines in human plasma: where are they coming from? J Lab Clin Med 116:681–686, 1990.

    PubMed  CAS  Google Scholar 

  45. Rubin GL, Sharp S, Jones AL, Glatt H, Mills JA, Coughtrie MW. Design, production and characterization of antibodies discriminating between the phenol- and monoamine-sulphating forms of human phenol sulphotransferase. Xenobiotica 26:1113–1119, 1996.

    Article  PubMed  CAS  Google Scholar 

  46. Eisenhofer G, Aneman A, Friberg P, et al. Substantial production of dopamine in the human gastrointestinal tract. J Clin Endocrinol Metab 82:3864–3871, 1997.

    Article  PubMed  CAS  Google Scholar 

  47. Goldstein DS, Swoboda KJ, Miles JM, et al. Sources and physiological significance of plasma dopamine sulfate. J Clin Endocrinol Metab 84:2523–2531, 1999.

    Article  PubMed  CAS  Google Scholar 

  48. Eisenhofer G, Coughtrie MW, Goldstein DS. Dopamine sulphate: an enigma resolved. Clin Exp Pharmacol Physiol Suppl 26:S41–53, 1999.

    PubMed  CAS  Google Scholar 

  49. LaBrosse EH, Comoy E, Bohuon C, Zucker JM, Schweisguth O. Catecholamine metabolism in neuroblastoma. J Natl Cancer Inst 57:633–638, 1976.

    PubMed  CAS  Google Scholar 

  50. Sjoerdsma A, King WM, Leeper LC, Udenfriend S. Demonstration of the 3-methoxy analog of norepinephrine in man. Science 127:876, 1957.

    Article  Google Scholar 

  51. Kopin IJ, Axelrod J. Presence of 3-methoxy-4-hydroxyphenylglycol and metanephrine in phaeochromocytoma tissue. Nature 185:788, 1960.

    Article  PubMed  CAS  Google Scholar 

  52. Sjoerdsma A, Leeper LC, Terry LL, Udenfriend S. Studies on the biogenesis and metabolism of norepinephrine in patients with pheochromocytoma. J Clin Invest 38:31–38, 1959.

    PubMed  CAS  Google Scholar 

  53. Pisano JJ. A simple analysis of normeta-nephrine and metanephrine in urine. Clin Chem 5:406–414, 1960.

    Article  CAS  Google Scholar 

  54. Crout JR, Pisano JJ, Sjoerdsma A. Urinary excretion of catecholamines and their metabolites in pheochromocytoma. Am Heart J 61:375–381, 1961.

    Article  PubMed  CAS  Google Scholar 

  55. Crout JR, Sjoerdsma A. Turnover and metabolism of catecholamines in patients with pheochromocytoma. J Clin Invest 43:94–102, 1964.

    PubMed  CAS  Google Scholar 

  56. Eisenhofer G, Huynh TT, Hiroi M, Pacak K, Understanding catecholamine metabolism as a guide to the biochemical diagnosis of pheochromocytoma. Rev Endocr Metab Disord 2:297–311, 2001.

    Article  PubMed  CAS  Google Scholar 

  57. DeQuattro V, Sullivan P, Foti A, et al. Central and regional normetadrenaline in evaluation of neurogenic aspects of hypertension: aid to diagnosis of phaeochromocytoma. Clin Sci (Lond) 59(Suppl 6):275s-277s, 1980.

    CAS  Google Scholar 

  58. Pacak K, Goldstein DS, Doppman JL, Shulkin BL, Udelsman R, Eisenhofer G.. A “pheo” lurks: novel approaches for locating occult pheochromocytoma. J Clin Endocrinol Metab 86:3641–3646, 2001.

    Article  PubMed  CAS  Google Scholar 

  59. Brown MJ. Simultaneous assays of noradrenaline and its deaminated metabolite, dihydroxyphenylglycol, in plasma: a simplified approach to the exclusion of phaeochromocytoma in patients with borderline elevation of plasma noradrenaline concentration. Eur J Clin Invest 14:67–72, 1984.

    Article  PubMed  CAS  Google Scholar 

  60. Peaston RT, Lai LC. Biochemical detection of phaeochromocytoma: should we still be measuring urinary HMMA. J Clin Pathol 46:734–737. 1993.

    PubMed  CAS  Google Scholar 

  61. Mannelli M, Ianni L, Cilotti A, Conti A, Pheochromocytoma in Italy: a multicentric retrospective study. Eur J Endocrinol 141: 619–624, 1999.

    Article  PubMed  CAS  Google Scholar 

  62. Lenders JW, Pacak K, Walther MM, et al. Biochemical diagnosis of pheochromocytoma: which test is best? JAMA 287:1427–1434. 2002.

    Article  PubMed  CAS  Google Scholar 

  63. Bravo EL, Tarazi RC, Gifford RW, Stewart BH. Circulating and urinary catecholamines in pheochromocytoma. Diagnostic and pathophysiologic implications. N Engl J Med 301:682–686 (1979).

    Article  PubMed  CAS  Google Scholar 

  64. van Heerden JA, Sheps SG, Hamberger B, Sheedy PF, 2nd, Poston JG, ReMine WH. Pheochromocytoma: current status and changing trends. Surgery 91:367–373, 1982.

    PubMed  Google Scholar 

  65. Bravo EL, Gifford RW, Jr. Current concepts. Pheochromocytoma: diagnosis, localization and management. N Engl J Med 311:1298–1303. 1984.

    Article  PubMed  CAS  Google Scholar 

  66. Sinclair D, Shenkin A, Lorimer AR. Normal catecholamine production in a patient with a paroxysmally secreting phaeochromocytoma. Ann Clin Biochem 28(Pt 4):417–419, 1991.

    PubMed  Google Scholar 

  67. Stewart MF, Reed P, Weinkove C, Moriarty KJ, Ralston AJ. Biochemical diagnosis of phaeochromocytoma: two instructive case reports. J Clin Pathol 46:280–282, 1993.

    PubMed  CAS  Google Scholar 

  68. Gerlo EA, Sevens C. Urinary and plasma catecholamines and urinary catecholamine metabolites in pheochromocytoma: diagnostic value in 19 cases. Clin Chem 40:250–256, 1994.

    PubMed  CAS  Google Scholar 

  69. Shawar L, Svec F. Pheochromocytoma with elevated metanephrines as the only biochemical finding. J La State Med Soc 148:535–538. 1996.

    PubMed  CAS  Google Scholar 

  70. Eisenhofer G, Free or total metanephrines for diagnosis of pheochromocytoma: what is the difference? Clin Chem 47:988–989, 2001.

    PubMed  CAS  Google Scholar 

  71. Young WF, Jr.. Pheochromocytoma: issues in diagnosis & treatment. Compr Ther 23:319–326, 1997.

    PubMed  Google Scholar 

  72. Landsberg L, Young JB. Pheochromocytoma. In: Braunwald E, Fauci AS, Kasper DL, Hauser SL, Longo DL, Jameson JL, eds. Harrison's principles of internal medicine, 15 ed. McGraw-Hill, New York, pp. 2105–2109, 2001.

    Google Scholar 

  73. Keiser HR. Pheochromocytoma and related tumors. In: DeGroot LJ, Jameson JL, eds. Endocrinology, 4 ed. Saunders, Philadelphia, pp. 1862–1883, 2001.

    Google Scholar 

  74. Bravo EL. What is the best diagnostic approach when pheochromocytoma is suspected. Cleve Clin J Med 69:257–258, 2002.

    PubMed  Google Scholar 

  75. Eisenhofer G, McCarty R, Pacak K, Russ H, Schomig E. Disprocynium 24, a novel inhibitor of the extraneuronal monoamine transporter, has potent effects on the inactivation of circulating noradrenaline and adrenaline in conscious rat. Naunyn Schmiedebergs Arch Pharmacol 354:287–294 1996.

    Article  PubMed  CAS  Google Scholar 

  76. Kobayashi K, Foti A, Dequattro V, Kolloch R, Miano L A radioenzymatic assay for free and conjugated normetanephrine and octopamine excretion in man. Clin Chim Acta 107:163–173, 1980.

    Article  PubMed  CAS  Google Scholar 

  77. Mornex R, Peyrin L, Pagliari R, Cottet-Emard JM. Measurement of plasma methoxyamines for the diagnosis of pheochromocytoma. Horm Res 36:220–226, 1991.

    PubMed  CAS  Google Scholar 

  78. Lenders JW, Eisenhofer G, Armando I, Keiser HR, Goldstein DS, Kopin IJ. Determination of metanephrines in plasma by liquid chromatography with electrochemical detection. Clin Chem 39:97–103, 1993.

    PubMed  CAS  Google Scholar 

  79. Lenders JW, Keiser HR, Goldstein DS, et al. Plasma metanephrines in the diagnosis of pheochromocytoma. Ann Intern Med 123: 101–109, 1995.

    PubMed  CAS  Google Scholar 

  80. Eisenhofer G, Lenders JW, Linchan WM, Walther MM, Goldstein DS, Keiser HR. Plasma normetanephrine and metanephrine for detecting pheochromocytoma in von Hippel-Lindau disease and multiple endocrine neoplasia type 2. N Engl J Med 340:1872–1879, 1999.

    Article  PubMed  CAS  Google Scholar 

  81. Raber W, Raffesberg W, Bischof M, et al. Diagnostic efficacy of unconjugated plasma metanephrines for the defection of pheochromocytoma. Arch Intern Med 160:2957–2963, 2000.

    Article  PubMed  CAS  Google Scholar 

  82. Sawka AM, Jaeschke R, Singh RJ, Young WF Jr. A comparison of biochemical tests for pheochromocytoma: Measurements of fractionated plasma metanephrines compared with the combination of 24-hour urinary metanephrines and catecholamines. J Clin Endocrinol Metab 88:553–558, 2003.

    Article  PubMed  CAS  Google Scholar 

  83. Eisenhofer G. Editorial: biochemical diagnosis of pheochromocytoma—is it time to switch to plasma-free metanephrines? J Clin Endocrinol Metab 88:550–552, 2003.

    Article  PubMed  CAS  Google Scholar 

  84. Eisenhofer G, Goldstein DS, Walther MM, et al. Biochemical diagnosis of pheochromocytoma: How to distinguish true-from falsepositive test results. J Clin Endocrinol Metab 88:2656–2666, 2003.

    Article  PubMed  CAS  Google Scholar 

  85. Lagerstedt SA, O'Kane DJ, Singh RJ. Liquid chromatography-randem mass spectrometry (LC-MS/MS) method for the analysis of free metanephrine and free normetanephrine in human plasma. Clin Chem 49 Suppl:A43, 2003.

    Google Scholar 

  86. Walther MM, Reiter R, Keiser HR, et al. Clinical and genetic characterization of pheochromocytoma in von Hippel-Lindau families: Comparison with sporadic pheochromocytoma gives insight into natural history of pheochromocytoma. J Urol 162: 659–664, 1999.

    Article  PubMed  CAS  Google Scholar 

  87. Mantero F, Terzolo M, Arnaldi G, et al. A survey on adrenal incidentaloma in Italy. Study Group on Adrenal Tumors of the Italian Society of Endocrinology. J Clin Endocrinol Metab 85:637–644, 2000.

    Article  PubMed  CAS  Google Scholar 

  88. Litchfield JW, Peart WS. Phaeochromocytoma with normal excretion of adrenaline and noradrenaline. Lancet 2:1283–1284, 1956.

    Article  Google Scholar 

  89. Koch CA, Rodbard JS, Brouwers FM, Eisenhofer G, Pacak K. Hypotension in a woman with a metastatic dopamine-secreting carotid body tumor. Endocr Prac, in press, 2003.

  90. Roden M, Raffesberg W, Raber W, et al. Quantification of unconjugated metanephrines in human plasma without interference by acetaminophen. Clin Chem 47: 1061–1067, 2001.

    PubMed  CAS  Google Scholar 

  91. Taylor RL, Singh RJ. Validation of liquid chromatography-tandem mass spectrometry method for analysis of urinary conjugated metanephrine and normetanephrine for screening of pheochromocytoma. Clin Chem 48:533–539 (2002).

    PubMed  CAS  Google Scholar 

  92. Raber W, Raffesberg W, Kmen E, et al. Pheochromocytoma with normal urinary and plasma catecholamines but elevated plasma free metanephrines in a patient with adrenal incidentaloma. Endocrinologist 10:65–68, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisenhofer, G., Goldstein, D.S., Kopin, I.J. et al. Pheochromocytoma: Rediscovery as a catecholamine-metabolizing tumor. Endocr Pathol 14, 193–212 (2003). https://doi.org/10.1007/s12022-003-0012-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-003-0012-4

Key Words

Navigation