Skip to main content

Advertisement

Log in

The Origins of Mesenchymal Stromal Cell Heterogeneity

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Cultured mesenchymal stromal cell (MSC) populations are best characterized by the capacity of some cells within this population to differentiate into mesodermal derivatives such as osteoblasts, chondrocytes and adipocytes. However, this progenitor property is not shared by all cells within the MSC population. Furthermore, MSCs exhibit variability in their phenotypes, including proliferation capacity, expression of cell surface markers and ability to secrete cytokines. These facts raise three major questions: (1) Does the in vitro observed variability reflect the existence of MSC subsets in vivo? (2) What is the molecular basis of the in vitro observed heterogeneity? and (3) What is the biological significance of this variability? This review considers the possibility that the variable nature of MSC populations contributes to the capacity of adult mammalian tissues to adapt to varying microenvironmental demands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friedenstein, A. J., Deriglasova, U. F., Kulagina, N. N., et al. (1974). Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Experimental Hematology, 2, 83–92.

    PubMed  CAS  Google Scholar 

  2. Friedenstein, A. J., Piatetzky, S., II, & Petrakova, K. V. (1966). Osteogenesis in transplants of bone marrow cells. Journal of Embryology and Experimental Morphology, 16, 381–390.

    PubMed  CAS  Google Scholar 

  3. Caplan, A. I. (1991). Mesenchymal stem cells. Journal of Orthopaedic Research, 9, 641–650.

    Article  PubMed  CAS  Google Scholar 

  4. Phinney, D. G., Kopen, G., Righter, W., Webster, S., Tremain, N., & Prockop, D. J. (1999). Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. Journal of Cellular Biochemistry, 75, 424–436.

    Article  PubMed  CAS  Google Scholar 

  5. Phinney, D. G., Kopen, G., Isaacson, R. L., & Prockop, D. J. (1999). Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. Journal of Cellular Biochemistry, 72, 570–585.

    Article  PubMed  CAS  Google Scholar 

  6. Werts, E. D., DeGowin, R. L., Knapp, S. K., & Gibson, D. P. (1980). Characterization of marrow stromal (fibroblastoid) cells and their association with erythropoiesis. Experimental Hematology, 8, 423–433.

    PubMed  CAS  Google Scholar 

  7. Allen, T. D., & Dexter, T. M. (1983). Long term bone marrow cultures: an ultrastructural review. Scan Electron Microsc, 1851–1866.

  8. Kuznetsov, S. A., Krebsbach, P. H., Satomura, K., et al. (1997). Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. Journal of Bone and Mineral Research, 12, 1335–1347.

    Article  PubMed  CAS  Google Scholar 

  9. Colter, D. C., Sekiya, I., & Prockop, D. J. (2001). Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proceedings of the National Academy of Sciences of the United States of America, 98, 7841–7845.

    Article  PubMed  CAS  Google Scholar 

  10. Zipori, D. (2009). Biology of stem cells and the molecular basis of the stem state. Humana Pr Inc. New York.

  11. Zipori, D., Duksin, D., Tamir, M., Argaman, A., Toledo, J., & Malik, Z. (1985). Cultured mouse marrow stromal cell lines. II. Distinct subtypes differing in morphology, collagen types, myelopoietic factors, and leukemic cell growth modulating activities. Journal of Cellular Physiology, 122, 81–90.

    Article  PubMed  CAS  Google Scholar 

  12. Tremain, N., Korkko, J., Ibberson, D., Kopen, G. C., DiGirolamo, C., & Phinney, D. G. (2001). MicroSAGE analysis of 2, 353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages. Stem Cells, 19, 408–418.

    Article  PubMed  CAS  Google Scholar 

  13. Matsuzaki, Y., Kinjo, K., Mulligan, R. C., & Okano, H. (2004). Unexpectedly efficient homing capacity of purified murine hematopoietic stem cells. Immunity, 20, 87–93.

    Article  PubMed  CAS  Google Scholar 

  14. McKenzie, J. L., Gan, O. I., Doedens, M., Wang, J. C., & Dick, J. E. (2006). Individual stem cells with highly variable proliferation and self-renewal properties comprise the human hematopoietic stem cell compartment. Nature Immunology, 7, 1225–1233.

    Article  PubMed  CAS  Google Scholar 

  15. Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.

    Article  PubMed  CAS  Google Scholar 

  16. Morikawa, S., Mabuchi, Y., Kubota, Y., et al. (2009). Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. The Journal of Experimental Medicine, 206, 2483–2496.

    Article  PubMed  CAS  Google Scholar 

  17. Anjos-Afonso, F., & Bonnet, D. (2007). Nonhematopoietic/endothelial SSEA-1+ cells define the most primitive progenitors in the adult murine bone marrow mesenchymal compartment. Blood, 109, 1298–1306.

    Article  PubMed  CAS  Google Scholar 

  18. Gang, E. J., Bosnakovski, D., Figueiredo, C. A., Visser, J. W., & Perlingeiro, R. C. (2007). SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood, 109, 1743–1751.

    Article  PubMed  CAS  Google Scholar 

  19. Gronthos, S., Zannettino, A. C., Hay, S. J., et al. (2003). Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. Journal of Cell Science, 116, 1827–1835.

    Article  PubMed  CAS  Google Scholar 

  20. Simmons, P. J., & Torok-Storb, B. (1991). Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood, 78, 55–62.

    PubMed  CAS  Google Scholar 

  21. Quirici, N., Soligo, D., Bossolasco, P., Servida, F., Lumini, C., & Deliliers, G. L. (2002). Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Experimental Hematology, 30, 783–791.

    Article  PubMed  CAS  Google Scholar 

  22. Buhring, H. J., Battula, V. L., Treml, S., Schewe, B., Kanz, L., & Vogel, W. (2007). Novel markers for the prospective isolation of human MSC. Annals of the New York Academy of Sciences, 1106, 262–271.

    Article  PubMed  Google Scholar 

  23. Sacchetti, B., Funari, A., Michienzi, S., et al. (2007). Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell, 131, 324–336.

    Article  PubMed  CAS  Google Scholar 

  24. Russell, K. C., Phinney, D. G., Lacey, M. R., Barrilleaux, B. L., Meyertholen, K. E., & O’Connor, K. C. (2010). In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment. Stem Cells, 28, 788–798.

    Article  PubMed  CAS  Google Scholar 

  25. Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.

    Article  PubMed  CAS  Google Scholar 

  26. Muraglia, A., Cancedda, R., & Quarto, R. (2000). Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. Journal of Cell Science, 113(Pt 7), 1161–1166.

    PubMed  CAS  Google Scholar 

  27. Okamoto, T., Aoyama, T., Nakayama, T., et al. (2002). Clonal heterogeneity in differentiation potential of immortalized human mesenchymal stem cells. Biochemical and Biophysical Research Communications, 295, 354–361.

    Article  PubMed  CAS  Google Scholar 

  28. Digirolamo, C. M., Stokes, D., Colter, D., Phinney, D. G., Class, R., & Prockop, D. J. (1999). Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. British Journal Haematology, 107, 275–281.

    Article  CAS  Google Scholar 

  29. Ylostalo, J., Bazhanov, N., & Prockop, D. J. (2008). Reversible commitment to differentiation by human multipotent stromal cells in single-cell-derived colonies. Experimental Hematology, 36, 1390–1402.

    Article  PubMed  CAS  Google Scholar 

  30. Sengers, B. G., Dawson, J. I., & Oreffo, R. O. (2010). Characterisation of human bone marrow stromal cell heterogeneity for skeletal regeneration strategies using a two-stage colony assay and computational modelling. Bone, 46, 496–503.

    Article  PubMed  Google Scholar 

  31. Le Blanc, K., Samuelsson, H., Lonnies, L., Sundin, M., & Ringden, O. (2007). Generation of immunosuppressive mesenchymal stem cells in allogeneic human serum. Transplantation, 84, 1055–1059.

    Article  PubMed  Google Scholar 

  32. Rombouts, W. J., & Ploemacher, R. E. (2003). Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia, 17, 160–170.

    Article  PubMed  CAS  Google Scholar 

  33. Briquet, A., Dubois, S., Bekaert, S., Dolhet, M., Beguin, Y., & Gothot, A. (2010). Prolonged ex vivo culture of human bone marrow mesenchymal stem cells influences their supportive activity toward NOD/SCID-repopulating cells and committed progenitor cells of B lymphoid and myeloid lineages. Haematologica, 95, 47–56.

    Article  PubMed  Google Scholar 

  34. Bonab, M. M., Alimoghaddam, K., Talebian, F., Ghaffari, S. H., Ghavamzadeh, A., & Nikbin, B. (2006). Aging of mesenchymal stem cell in vitro. BMC Cell Biology, 7, 14.

    Article  PubMed  Google Scholar 

  35. Conget, P. A., & Minguell, J. J. (1999). Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. Journal of Cellular Physiology, 181, 67–73.

    Article  PubMed  CAS  Google Scholar 

  36. Wagner, W., Horn, P., Castoldi, M., et al. (2008). Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS ONE, 3, e2213.

    Article  PubMed  Google Scholar 

  37. Schallmoser, K., Bartmann, C., Rohde, E., et al. (2010). Replicative senescence-associated gene expression changes in mesenchymal stromal cells are similar under different culture conditions. Haematologica, 95, 867–874.

    Article  PubMed  CAS  Google Scholar 

  38. Izadpanah, R., Kaushal, D., Kriedt, C., et al. (2008). Long-term in vitro expansion alters the biology of adult mesenchymal stem cells. Cancer Research, 68, 4229–4238.

    Article  PubMed  CAS  Google Scholar 

  39. Bork, S., Pfister, S., Witt, H., et al. (2010). DNA methylation pattern changes upon long-term culture and aging of human mesenchymal stromal cells. Aging Cell, 9, 54–63.

    Article  PubMed  CAS  Google Scholar 

  40. Zipori, D. (2010). The hemopoietic stem cell niche versus the microenvironment of the multiple myeloma-tumor initiating cell. Cancer Microenvironment, 3, 15–28.

    Article  PubMed  CAS  Google Scholar 

  41. Wagner, W., Ho, A. D., & Zenke, M. (2010). Different facets of aging in human mesenchymal stem cells. Tissue Engineering. Part B: Reviews, 16, 445–453.

    Article  Google Scholar 

  42. Bernardo, M. E., Zaffaroni, N., Novara, F., et al. (2007). Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Research, 67, 9142–9149.

    Article  PubMed  CAS  Google Scholar 

  43. Colter, D. C., Class, R., DiGirolamo, C. M., & Prockop, D. J. (2000). Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proceedings of the National Academy of Sciences of the United States of America, 97, 3213–3218.

    Article  PubMed  CAS  Google Scholar 

  44. Fehrer, C., Brunauer, R., Laschober, G., et al. (2007). Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell, 6, 745–757.

    Article  PubMed  CAS  Google Scholar 

  45. Pevsner-Fischer, M., & Zipori, D. (2009). Environmental signals regulating mesenchymal progenitor cell growth and differentiation. In VKV Rajasekhar & C. Mohan (Eds.), Regulatory networks in stem cells. 1st ed (p. 175–184) Humana.

  46. Bruder, S. P., Jaiswal, N., & Haynesworth, S. E. (1997). Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. Journal of Cellular Biochemistry, 64, 278–294.

    Article  PubMed  CAS  Google Scholar 

  47. Zipori, D., Friedman, A., Tamir, M., Silverberg, D., & Malik, Z. (1984). Cultured mouse marrow cell lines: interactions between fibroblastoid cells and monocytes. Journal of Cellular Physiology, 118, 143–152.

    Article  PubMed  CAS  Google Scholar 

  48. Shoham, T., Sternberg, D., Brosh, N., Krupsky, M., Barda-Saad, M., & Zipori, D. (2001). The promotion of plasmacytoma tumor growth by mesenchymal stroma is antagonized by basic fibroblast growth factor induced activin A. Leukemia, 15, 1102–1110.

    Article  PubMed  CAS  Google Scholar 

  49. Phinney, D. G., Hill, K., Michelson, C., et al. (2006). Biological activities encoded by the murine mesenchymal stem cell transcriptome provide a basis for their developmental potential and broad therapeutic efficacy. Stem Cells, 24, 186–198.

    Article  PubMed  Google Scholar 

  50. Phinney, D. G. (2007). Biochemical heterogeneity of mesenchymal stem cell populations: clues to their therapeutic efficacy. Cell Cycle, 6, 2884–2889.

    Article  PubMed  CAS  Google Scholar 

  51. Crisan, M., Yap, S., Casteilla, L., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3, 301–313.

    Article  PubMed  CAS  Google Scholar 

  52. da Silva Meirelles, L., Caplan, A. I., & Nardi, N. B. (2008). In search of the in vivo identity of mesenchymal stem cells. Stem Cells, 26, 2287–2299.

    Article  PubMed  Google Scholar 

  53. Guillot, P. V., De Bari, C., Dell’Accio, F., Kurata, H., Polak, J., & Fisk, N. M. (2008). Comparative osteogenic transcription profiling of various fetal and adult mesenchymal stem cell sources. Differentiation, 76, 946–957.

    PubMed  CAS  Google Scholar 

  54. Sakaguchi, Y., Sekiya, I., Yagishita, K., & Muneta, T. (2005). Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis and Rheumatism, 52, 2521–2529.

    Article  PubMed  Google Scholar 

  55. Zipori, D. (2005). The stem state: plasticity is essential, whereas self-renewal and hierarchy are optional. Stem Cells, 23, 719–726.

    Article  PubMed  CAS  Google Scholar 

  56. Hay, E. D. (2005). The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Developmental Dynamics, 233, 706–720.

    Article  PubMed  CAS  Google Scholar 

  57. Prindull, G., & Zipori, D. (2004). Environmental guidance of normal and tumor cell plasticity: epithelial mesenchymal transitions as a paradigm. Blood, 103, 2892–2899.

    Article  PubMed  CAS  Google Scholar 

  58. Aubin, J. E. (1998). Bone stem cells. Journal of Cellular Biochemistry. Supplement, 30–31, 73–82.

    Article  PubMed  Google Scholar 

  59. Banfi, A., Muraglia, A., Dozin, B., Mastrogiacomo, M., Cancedda, R., & Quarto, R. (2000). Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy. Experimental Hematology, 28, 707–715.

    Article  PubMed  CAS  Google Scholar 

  60. Sarugaser, R., Hanoun, L., Keating, A., Stanford, W. L., & Davies, J. E. (2009). Human mesenchymal stem cells self-renew and differentiate according to a deterministic hierarchy. PLoS ONE, 4, e6498.

    Article  PubMed  Google Scholar 

  61. Chen, F. G., Zhang, W. J., Bi, D., et al. (2007). Clonal analysis of nestin(−) vimentin(+) multipotent fibroblasts isolated from human dermis. Journal of Cell Science, 120, 2875–2883.

    Article  PubMed  CAS  Google Scholar 

  62. Bianco, P., Robey, P. G., Saggio, I., & Riminucci, M. (2010). “Mesenchymal” stem cells in human bone marrow (skeletal stem cells): a critical discussion of their nature, identity, and significance in incurable skeletal disease. Human Gene Therapy, 21, 1057–1066.

    Article  PubMed  CAS  Google Scholar 

  63. Weissman, I. L., & Shizuru, J. A. (2008). The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood, 112, 3543–3553.

    Article  PubMed  CAS  Google Scholar 

  64. Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414, 105–111.

    Article  PubMed  CAS  Google Scholar 

  65. Zipori, D. (2006). The stem state: mesenchymal plasticity as a paradigm. Current Stem Cell Research & Therapy, 1, 95–102.

    Article  CAS  Google Scholar 

  66. Zipori, D. (2004). Mesenchymal stem cells: harnessing cell plasticity to tissue and organ repair. Blood Cells, Molecules & Diseases, 33, 211–215.

    Article  CAS  Google Scholar 

  67. Sternberg, D., Peled, A., Shezen, E., et al. (1996). Control of stroma-dependent hematopoiesis by basic fibroblast growth factor: stromal phenotypic plasticity and modified myelopoietic functions. Cytokines and Molecular Therapy, 2, 29–38.

    PubMed  CAS  Google Scholar 

  68. Zipori, D., Toledo, J., & von der Mark, K. (1985). Phenotypic heterogeneity among stromal cell lines from mouse bone marrow disclosed in their extracellular matrix composition and interactions with normal and leukemic cells. Blood, 66, 447–455.

    PubMed  CAS  Google Scholar 

  69. Verfaillie, C. M. (2002). Adult stem cells: assessing the case for pluripotency. Trends in Cell Biology, 12, 502–508.

    Article  PubMed  CAS  Google Scholar 

  70. Dickhut, A., Pelttari, K., Janicki, P., et al. (2009). Calcification or dedifferentiation: requirement to lock mesenchymal stem cells in a desired differentiation stage. Journal of Cellular Physiology, 219, 219–226.

    Article  PubMed  CAS  Google Scholar 

  71. Matsumoto, T., Kano, K., Kondo, D., et al. (2008). Mature adipocyte-derived dedifferentiated fat cells exhibit multilineage potential. Journal of Cellular Physiology, 215, 210–222.

    Article  PubMed  CAS  Google Scholar 

  72. Schilling, T., Kuffner, R., Klein-Hitpass, L., Zimmer, R., Jakob, F., & Schutze, N. (2008). Microarray analyses of transdifferentiated mesenchymal stem cells. Journal of Cellular Biochemistry, 103, 413–433.

    Article  PubMed  CAS  Google Scholar 

  73. Schilling, T., Noth, U., Klein-Hitpass, L., Jakob, F., & Schutze, N. (2007). Plasticity in adipogenesis and osteogenesis of human mesenchymal stem cells. Molecular and Cellular Endocrinology, 271, 1–17.

    Article  PubMed  CAS  Google Scholar 

  74. Sato, Y., Araki, H., Kato, J., et al. (2005). Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood, 106, 756–763.

    Article  PubMed  CAS  Google Scholar 

  75. Hermann, A., Gastl, R., Liebau, S., et al. (2004). Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. Journal of Cell Science, 117, 4411–4422.

    Article  PubMed  CAS  Google Scholar 

  76. Song, L., & Tuan, R. S. (2004). Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. The FASEB Journal, 18, 980–982.

    PubMed  CAS  Google Scholar 

  77. Spees, J. L., Olson, S. D., Ylostalo, J., et al. (2003). Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proceedings of the National Academy of Sciences of the United States of America, 100, 2397–2402.

    Article  PubMed  CAS  Google Scholar 

  78. Woodbury, D., Schwarz, E. J., Prockop, D. J., & Black, I. B. (2000). Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of Neuroscience Research, 61, 364–370.

    Article  PubMed  CAS  Google Scholar 

  79. Krinner, A., Hoffmann, M., Loeffler, M., Drasdo, D., & Galle, J. (2010). Individual fates of mesenchymal stem cells in vitro. BMC Systems Biology, 4, 73.

    Article  PubMed  Google Scholar 

  80. Enver, T., Heyworth, C. M., & Dexter, T. M. (1998). Do stem cells play dice? Blood, 92, 348–351. discussion 52.

    PubMed  CAS  Google Scholar 

  81. Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E., & Huang, S. (2008). Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature, 453, 544–547.

    Article  PubMed  CAS  Google Scholar 

  82. Blake, W. J., Kaern, M., Cantor, C. R., & Collins, J. J. (2003). Noise in eukaryotic gene expression. Nature, 422, 633–637.

    Article  PubMed  CAS  Google Scholar 

  83. Pedraza, J. M., & van Oudenaarden, A. (2005). Noise propagation in gene networks. Science, 307, 1965–1969.

    Article  PubMed  CAS  Google Scholar 

  84. Elowitz, M. B., Levine, A. J., Siggia, E. D., & Swain, P. S. (2002). Stochastic gene expression in a single cell. Science, 297, 1183–1186.

    Article  PubMed  CAS  Google Scholar 

  85. Kaern, M., Elston, T. C., Blake, W. J., & Collins, J. J. (2005). Stochasticity in gene expression: from theories to phenotypes. Nature Reviews. Genetics, 6, 451–464.

    Article  PubMed  CAS  Google Scholar 

  86. Furusawa, C., & Kaneko, K. (2009). Chaotic expression dynamics implies pluripotency: when theory and experiment meet. Biology Direct, 4, 17.

    Article  PubMed  Google Scholar 

  87. Krinner, A., Zscharnack, M., Bader, A., Drasdo, D., & Galle, J. (2009). Impact of oxygen environment on mesenchymal stem cell expansion and chondrogenic differentiation. Cell Proliferation, 42, 471–484.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the Helen and Martin Kimmel Institute for Stem Cell Research and the M.D. Moross Institute for Cancer Research, at the Weizmann Institute, the Gabrielle Rich Center for Transplantation Biology and the support of the Legacy Heritage Fund of New York. DZ is an incumbent of the Joe and Celia Weinstein Professorial Chair at the Weizmann Institute of Science.

Conflicts of Interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dov Zipori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pevsner-Fischer, M., Levin, S. & Zipori, D. The Origins of Mesenchymal Stromal Cell Heterogeneity. Stem Cell Rev and Rep 7, 560–568 (2011). https://doi.org/10.1007/s12015-011-9229-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-011-9229-7

Keywords

Navigation