Skip to main content

Advertisement

Log in

Cord Blood Stem Cells: A Review of Potential Neurological Applications

  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

It is estimated that as many as 128M individuals in the United States, or 1 in 3 people, might benefit from regenerative medicine therapy. Many of these usages include applications that affect the nervous system, including cerebral palsy, stroke, spinal cord injury and neurodegenerative disease such as Parkinson’s. The numbers of such individuals affected range from 10,000 (for cerebral palsy) to 700,000 annually (for stroke) at a cost of more than $65B. For the foreseeable future, regenerative medicine entrée to the clinic will depend upon the development of adult or non-embryonic stem (ES) cell therapies. Currently, non-ES cells easily available in large numbers from affected individuals can be found in the bone marrow, adipose tissue and umbilical cord blood (CB). It is our belief that CB stem cells are the best alternative to ES cells as these stem cells can be used to derive tissues from the mesodermal, endodermal and ectodermal germ lineages. CB contains a mixture of different types of stem cells in numbers not seen in any other location including embryonic-like stem cells, hematopoietic stem cells, endothelial stem cells, epithelial stem cells, mesenchymal stem cells and unrestricted somatic stem cells. This review will summarize the findings reported in the literature with regards to the use of CB stem cells to neurological applications including in vitro work, pre-clinical animal studies, and patient clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rubinstein, P. (2006). Why cord blood? Human Immunology, 67, 398–404.

    Article  PubMed  CAS  Google Scholar 

  2. Rubinstein, P., Rosenfield, R. E., Adamson, J. W., et al. (1993). Stored placental blood for unrelated bone marrow reconstitution. Blood, 81, 1679–1690.

    PubMed  CAS  Google Scholar 

  3. Gluckman, E., Rocha, V., & Boyer-Chammard, A. (1997). Outcome of cord-blood transplantation from related and unrelated donors. New England Journal of Medicine, 337, 373–381.

    Article  PubMed  CAS  Google Scholar 

  4. Harris, D. T., Badowski, M., Ahmad, N., & Gaballa, M. (2008). The potential of cord blood stem cells for use in regenerative medicine. Expert Opinion on Biological Therapy, 7(9), 1311–1322.

    Article  Google Scholar 

  5. Harris, D. T., & Rogers, I. (2007). Umbilical cord blood: a unique source of pluripotent stem cells for regenerative medicine. Current Stem Cell Research & Therapy, 2, 301–309.

    Article  CAS  Google Scholar 

  6. Seaberg, R. M., & van der Kooy, D. (2002). Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors. Journal of Neuroscience, 22, 1784–1793.

    PubMed  CAS  Google Scholar 

  7. Hill, E., Boontheekul, T., & Mooney, D. J. (2006). Regulating activation of transplanted cells controls tissue regeneration. Proceedings of the National Academy of Sciences of the United States of America, 103, 2494–2449.

    Article  PubMed  CAS  Google Scholar 

  8. Tropepe, V., Coles, B. L., Chiasson, B. J., Horsford, D. J., Elia, A. J., McInnes, R. R., et al. (2000). Retinal stem cells in the adult mammalian eye. Science, 287, 2032–2036.

    Article  PubMed  CAS  Google Scholar 

  9. Seaberg, R. M., Smukler, S. R., Kieffer, T. J., Enikolopov, G., Asghar, Z., Wheeler, M. B., et al. (2004). Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nature Biotechnology, 22, 1115–1124.

    Article  PubMed  CAS  Google Scholar 

  10. Toma, J. G., Akhavan, M., Fernandes, K. J., Barnabe-Heider, F., Sadikot, A., Kaplan, D. R., et al. (2001). Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nature Cell Biology, 3, 778–784.

    Article  PubMed  CAS  Google Scholar 

  11. Yoon, B. I., Choi, Y. K., & Kim, D. Y. (2004). Differentiation processes of oval cells into hepatocytes: proposals based on morphological and phenotypical traits in carcinogen-treated hamster liver. Journal of Comparative Pathology, 131, 1–9.

    Article  PubMed  CAS  Google Scholar 

  12. Kogler, G., Sensken, S., & Wernet, P. (2006). Comparative generation and characterization of pluripotent unrestricted somatic stem cells with mesenchymal stem cells from human cord blood. Experimental Hematology, 34(11), 1589–95.

    Article  PubMed  CAS  Google Scholar 

  13. McGuckin, C., Forraz, N., Baradez, M. O., et al. (2005). Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Proliferation, 38, 245–255.

    Article  PubMed  CAS  Google Scholar 

  14. Copeland, N., Harris, D., & Gaballa, M. A. (2008). Human umbilical cord blood stem cells are a beneficial therapy in experimental models of myocardial infarction and stroke. Clinical Medicine: Cardiology, in press.

  15. Sunkomat, J. N. E, Goldman, S., Harris, D. T., et al. (2008). Cord blood-derived MNCs delivered intracoronary contribute differently to vascularization compared to CD34+ cells in the rat model of acute ischemia. Manuscript submitted for publication.

  16. Harris, D. T., He, X., Camacho, D., Gonzalez, V., & Nichols, J. C. (2006). The potential of cord blood stem cells for use in tissue engineering of the eye, stem cells & regenerative medicine, Jan 23–25, 2006, San Francisco, Abstract

  17. Harris, D. T., He, X., Badowski, M., & Nicols, J. C. (2008). Regenerative medicine of the eye: a short review. In N. Levicar, N. A. Habib, I. Dimarakis, & M. Y. Gordon (Eds.), Stem cell repair & regeneration(vol. 3). London: Imperial College Press.

    Google Scholar 

  18. Nichols, J. C., He, X., & Harris, D. T. (2005). Differentiation of Cord Blood Stem Cells Into Corneal Epithelium. Invest Ophthalmol Vis Sci, 46, E-Abstract 4772.

    Google Scholar 

  19. Mcguckin, C. P., Forraz, N., Allouard, Q., & Pettengell, R. (2004). Umbilical cord blood stem cells can expand hematopoietic and neuroglial progenitors in vitro. Experimental Cell Research, 295, 350–359.

    Article  PubMed  CAS  Google Scholar 

  20. Jang, Y. K., Park, J. J., Lee, M. C., et al. (2004). Retinoic acid-mediated induction of neurons and glial cells from human umbilical cord-derived hematopoietic stem cells. Journal of Neuroscience Research, 75, 573–584.

    Article  PubMed  CAS  Google Scholar 

  21. Buzanska, L., Jurga, M., Stachowiak, E. K., Stachowiak, M. K., & Domanska-Janik, K. (2006). Neural stem-like cell line derived from a nonhematopoietic population of human umbilical cord blood. Stem Cells Develop, 15, 391–406.

    Article  CAS  Google Scholar 

  22. Harris, D. T., Ahmad, N., Saxena, S. K. et al. (2005). The Potential of Cord Blood Stem Cells for Use in Tissue Engineering. Abstract, Intl. TESi meeting, Shanghai, China, Oct 2005

  23. Rogers, I., Yamanaka, N., Bielecki, R., Wong, C. J., Chua, S., Yuen, S., et al. (2007). Identification and analysis of in vitro cultured CD45-positive cells capable of multi-lineage differentiation. Experimental Cell Research, 313, 1839–1852.

    Article  PubMed  CAS  Google Scholar 

  24. Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., et al. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 113, 631–642.

    Article  PubMed  CAS  Google Scholar 

  25. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    Article  PubMed  CAS  Google Scholar 

  26. Tippett, P., Andrews, P. W., Knowles, B. B., Solter, D., & Goodfellow, P. N. (1986). Red cell antigens P (globoside) and Luke: identification by monoclonal antibodies defining the murine stage-specific embryonic antigens -3 and -4 (SSEA-3 and SSEA-4). Vox Sang, 51, 53–56.

    Article  PubMed  CAS  Google Scholar 

  27. Yu, M., Xiao, Z., Shen, L., & Li, L. (2004). Mid-trimester fetal blood-derived adherent cells share characteristics similar to mesenchymal stem cells but full-term umbilical cord blood does not. British Journal of Haematology, 124, 666–675.

    Article  PubMed  Google Scholar 

  28. Schmidt, D., Breymann, Y., Weber, A., et al. (2004). Umbilical cord blood derived endothelial progenitor cells for tissue engineering of vascular grafts. Soc Thorac Surg, 78, 2094–2098.

    Article  Google Scholar 

  29. Chen, J., Sanberg, P. R., Li, Y., et al. (2001). Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke, 32, 2682–2688.

    Article  PubMed  CAS  Google Scholar 

  30. Willing, A. E., Lixian, J., Milliken, M., et al. (2003). Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. Journal of Neuroscience Research, 73(3), 296–307.

    Article  PubMed  CAS  Google Scholar 

  31. Borlongan, C. V., Hadman, M., Sanberg, C. D., & Sanberg, P. R. (2004). Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke, 35, 2385–2389.

    Article  PubMed  Google Scholar 

  32. Newman, M. B., Willing, A. E., Manressa, J. J., Sanberg, C. D., & Sanberg, P. R. (2006). Cytokines produced by cultured human umbilical cord blood (HUCB) cells: implications for brain repair. Experimental Neurology, 199(1), 201–208.

    Article  PubMed  CAS  Google Scholar 

  33. Vendrame, M., Cassady, J., Newcomb, J., et al. (2004). Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke, 35, 2390–2395.

    Article  PubMed  Google Scholar 

  34. Xiao, J., Nan, Z., Motooka, Y., & Low, W. C. (2005). Transplantation of a novel cell line population of umbilical cord blood stem cells ameliorates neurological deficits associated with ischemic brain injury. Stem Cells Dev., 14, 722–733.

    Article  PubMed  CAS  Google Scholar 

  35. Newcomb, J. D., Ajrno, C. T., Sanberg, C. D., et al. (2006). Timing of cord blood treatment after experimental stroke determines therapeutic efficacy. Cell Transplant, 15, 213–223.

    Article  PubMed  Google Scholar 

  36. Vendrame, M., Gemma, C., Pennypacker, K. R., Bickford, P. C., Davis Sanberg, C., Sanberg, P. R., et al. (2006). Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Experimental Neurology, 199(1), 191–200 May.

    Article  PubMed  CAS  Google Scholar 

  37. Meier, C., Middelanis, J., Wasielewski, B., Neuhoff, S., Roth-Haerer, A., Gantert, M., et al. (2006). Spastic paresis after perinatal brain damage in rats is reduced by human cord blood mononuclear cells. Pediatric Research, 59(2), 244–249 Feb.

    Article  PubMed  Google Scholar 

  38. Chen, S. H., Chang, F. M., Tsai, Y. C., Huang, K. F., Lin, C. L., & Lin, M. T. (2006). Infusion of human umbilical cord blood cells protect against cerebral ischemia and damage during heatstroke in the rat. Experimental Neurology, 199(1):67–76, May.

    Article  PubMed  CAS  Google Scholar 

  39. Vendrame, M., Gemma, C., de Mesquita, D., Collier, L., Bickford, P. C., Sanberg, C. D., et al. (2005). Anti-inflammatory effects of human cord blood cells in a rat model of stroke. Stem Cells Dev., 14(5), 595–604 Oct.

    Article  PubMed  CAS  Google Scholar 

  40. Nan, Z., Grande, A., Sanberg, C. D., Sanberg, P. R., & Low, W. C. (2005). Infusion of human umbilical cord blood ameliorates neurologic deficits in rats with hemorrhagic brain injury. Annals of the New York Academy of Sciences, 1049, 84–96 May.

    Article  PubMed  Google Scholar 

  41. Nystedt, J., Mäkinen, S., Laine, J., & Jolkkonen, J. (2006). Human cord blood CD34+ cells and behavioral recovery following focal cerebral ischemia in rats. Acta Neurobiol Exp (Wars)., 66(4), 293–300.

    Google Scholar 

  42. Mäkinen, S., Kekarainen, T., Nystedt, J., Liimatainen, T., Huhtala, T., Närvänen, A., et al. (2006). Human umbilical cord blood cells do not improve sensorimotor or cognitive outcome following transient middle cerebral artery occlusion in rats. Brain Research, 1123(1), 207–215 Dec 6.

    Article  PubMed  CAS  Google Scholar 

  43. Chang, C. K., Chang, C. P., Chiu, W. T., & Lin, M. T. (2006). Prevention and repair of circulatory shock and cerebral ischemia/injury by various agents in experimental heatstroke. Current Medicinal Chemistry, 13(26), 3145–54.

    Article  PubMed  CAS  Google Scholar 

  44. Bliss, T., Guzman, R., Daadi, M., & Steinberg, G. K. (2007). Cell transplantation therapy for stroke. Stroke, 38, 817–826.

    Article  PubMed  Google Scholar 

  45. Chen, N., Hudson, J. E., Walczak, P., et al. (2005). Human umbilical cord blood progenitors: the potential of these hematopoietic cells to become neural. Stem Cells, 23, 1560–1570.

    Article  PubMed  CAS  Google Scholar 

  46. Saporta, S., Kim, J. J., Willing, A. E., et al. (2003). Human umbilical cord blood stem cells infusion in spinal cord injury: engraftment and beneficial influence on behavior. J. Hematother Stem Cell Res, 12, 271–278.

    Article  PubMed  CAS  Google Scholar 

  47. Kuh, S. U., Cho, Y. E., Yoon, D. H., et al. (2005). Functional recovery after human umbilical cord blood cells transplantation with brain derived-neurotropic factor into the spinal cord injured rats. Acta Neurochirurgica (Wein), 14, 985–992.

    Article  Google Scholar 

  48. Kang, K. S., Kim, S. W., Oh, Y. H., et al. (2005). Thirty-seven-year old spinal cord-injured female patient, tranplanted of multipotent stem cells from human UC blood with improved sensory perception and mobility, both functionally and morphologically: A case study. Cytotherapy, 7, 368–373.

    Article  PubMed  Google Scholar 

  49. Lu, D., Sanberg, P. R., Mahmood, A., et al. (2002). Intravenous administration of human umbilical cord blood reduces neurological deficit in the rat after traumatic brain injury. Cell Transplant, 11, 275–281.

    PubMed  Google Scholar 

  50. Ende, N., & Chen, R. (2002). Parkinson’s disease mice and human umbilical cord blood. J Med, 33, 173–80.

    PubMed  Google Scholar 

  51. Gaebuzova-Davis, S., Willing, A. E., Zigova, T., et al. (2003). Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. Journal of Hematotherapy and Stem Cell Research, 12, 255–270.

    Article  CAS  Google Scholar 

  52. Nishio, Y., Koda, M., Kamada, T., Someya, Y., Yoshinaga, K., Okada, S., et al. (2006). The use of hemopoietic stem cells derived from human umbilical cord blood to promote restoration of spinal cord tissue and recovery of hindlimb function in adult rats. J Neurosurg Spine, 5, 424–33.

    Article  PubMed  Google Scholar 

  53. Zhao, Z. M., Li, H. J., Liu, H. Y., Lu, S. H., Yang, R. C., Zhang, Q. J., et al. (2004). Intraspinal transplantation of CD34+ human umbilical cord blood cells after spinal cord hemisection injury improves functional recovery in adult rats. Cell Transplant, 13, 113–22.

    PubMed  Google Scholar 

  54. Chen, R., & Ende, N. (2000). The potential for the use of mononuclear cells from human umbilical cord blood in the treatment of amyotrophic lateral sclerosis in SOD1 mice. J Med, 31, 21–30.

    PubMed  CAS  Google Scholar 

  55. Ende, N., Weinstein, F., Chen, R., & Ende, M. (2000). Human umbilical cord blood effect on sod mice (amyotrophic lateral sclerosis). Life Sciences, 67, 53–59.

    Article  PubMed  CAS  Google Scholar 

  56. Bachstetter, A. D., Pabon, M. M., Cole, M. J., Hudson, C. E., Sanberg, P. R., Willing, A. E., et al. (2008). Peripheral injection of human umbilical cord blood stimulates neurogenesis in the aged rat brain. 2008. Published online at BMC Neuroscience 9:30; doi:10.1186/1471–2202–9–22.

  57. Nikolic, W. V., Hou, H., Town, T., Zhu, Y., Giunta, B., Sanberg, C. D., Zeng, J., Luo, D., Ehrhart, J., Mori, T., Sanberg Pr, Tan1 J. (2008). Peripherally administered human umbilical cord blood cells reduce parenchymal and vascular beta-amyloid deposits in Alzheimer mice. Stem Cells Develop., 17, 1–17.

    Google Scholar 

Download references

Acknowledgements

I would like to acknowledge the expert technical assistance of Michael Badowski in many of the endeavors performed in my laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. Harris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, D.T. Cord Blood Stem Cells: A Review of Potential Neurological Applications. Stem Cell Rev 4, 269–274 (2008). https://doi.org/10.1007/s12015-008-9039-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-008-9039-8

Keywords

Navigation