Skip to main content
Log in

Doxorubicin-induced Changes of Ventricular Repolarization Heterogeneity: Results of a Chronic Rat Study

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Anthracycline chemotherapy produces cardiac repolarization abnormalities and arrhythmias because of cardiac toxicity of drugs. Ventricular arrhythmogenesis is attributable to increase in repolarization heterogeneity that is characterized by spatial dispersion of repolarization. The purpose of this work was to study the delayed effects of doxorubicin, the most frequently used anthracycline, on repolarization heterogeneity of the ventricular epicardium. Doxorubicin was administered to rats in a cumulative dose of 15 mg/kg (six equal intraperitoneal injections over a period of 2 weeks). Six weeks after the last injection, electrophysiological mapping of the ventricular epicardium was performed by sequential superimposition of a 64-electrode array on the left ventricular base, left ventricular apex, right ventricular base, and right ventricular apex. Activation–recovery intervals (ARIs) were measured. In doxorubicin-treated rats, ARIs were inhomogeneously prolonged, the overall ARI dispersion and local ARI dispersions were increased, and the interregional differences in ARI dispersion were decreased. These data demonstrate that doxorubicin-induced inhomogeneous prolongation of repolarization of the ventricular epicardium results in increasing heterogeneity of ventricular repolarization because of increasing intraregional heterogeneity while interregional differences are lost. Repolarization of the right ventricle is more sensitive to doxorubicin than that of the left one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Singal, P. K., Li, T., Kumar, D., Danelisen, I., & Iliskovic, N. (2000). Adriamycin-induced heart failure: Mechanism and modulation. Molecular and Cellular Biochemistry, 207, 77–85.

    Article  PubMed  CAS  Google Scholar 

  2. Chen, B., Peng, X., Pentassuglia, L., Lim, C. C., & Sawyer, D. B. (2007). Molecular and cellular mechanisms of anthracycline cardiotoxicity. Cardiovascular Toxicology, 7, 114–121.

    Article  PubMed  CAS  Google Scholar 

  3. Monsuez, J. J., Charniot, J. C., Vignat, N., & Artigou, J. Y. (2010). Cardiac side-effects of cancer chemotherapy. International Journal of Cardiology, 144, 3–15.

    Article  PubMed  Google Scholar 

  4. Senkus, E., & Jassem, J. (2011). Cardiovascular effects of systemic cancer treatment. Cancer Treatment Reviews, 37, 300–311.

    Article  PubMed  CAS  Google Scholar 

  5. Horacek, J. M., Jakl, M., Horackova, J., Pudil, R., Jebavy, L., & Maly, J. (2009). Assessment of anthracycline-induced cardiotoxicity with electrocardiography. Experimental Oncology, 31, 115–117.

    PubMed  CAS  Google Scholar 

  6. Guglin, M., Aljayeh, M., Saiyad, S., Ali, R., & Curtis, A. B. (2009). Introducing a new entity: Chemotherapy-induced arrhythmia. Europace, 11, 1579–1586.

    Article  PubMed  Google Scholar 

  7. Jensen, R. A., Acton, E. M., & Peters, J. H. (1984). Doxorubicin cardiotoxicity in the rat: Comparison of electrocardiogram, transmembrane potential, and structural effects. Journal of Cardiovascular Pharmacology, 6, 186–200.

    Article  PubMed  CAS  Google Scholar 

  8. Agen, C., Bernardini, N., Danesi, R., Della Torre, P., Costa, M., & Del Tacca, M. (1992). Reducing doxorubicin cardiotoxicity in the rat using deferred treatment with ADR-529. Cancer Chemotherapy and Pharmacology, 30, 95–99.

    Article  PubMed  CAS  Google Scholar 

  9. Cirillo, R., Sacco, G., Venturella, S., Brightwell, J., Giachetti, A., & Manzini, S. (2000). Comparison of doxorubicin- and MEN 10755-induced long-term progressive cardiotoxicity in the rat. Journal of Cardiovascular Pharmacology, 35, 100–108.

    Article  PubMed  CAS  Google Scholar 

  10. Xu, M., Sheng, L., Zhu, X., Zeng, S., Chi, D., & Zhang, G. J. (2010). Protective effect of tetrandrine on doxorubicin-induced cardiotoxicity in rats. Tumori, 96, 460–464.

    PubMed  CAS  Google Scholar 

  11. Hazari, M. S., Haykal-Coates, N., Winsett, D. W., Costa, D. L., & Farraj, A. K. (2009). Continuous electrocardiogram reveals differences in the short-term cardiotoxic response of Wistar-Kyoto and spontaneously hypertensive rats to doxorubicin. Toxicological Sciences, 110, 224–234.

    Article  PubMed  CAS  Google Scholar 

  12. Antzelevitch, C. (2007). Role of spatial dispersion of repolarization in inherited and acquired sudden cardiac death syndromes. American Journal of Physiology Heart and Circulatory Physiology, 293, H2024–H2038.

    Article  PubMed  CAS  Google Scholar 

  13. Killeen, M. J., Sabir, I. N., Grace, A. A., & Huang, C. L. (2008). Dispersions of repolarization and ventricular arrhythmogenesis: Lessons from animal models. Progress in Biophysics and Molecular Biology, 98, 219–229.

    Article  PubMed  Google Scholar 

  14. Earm, Y. E., Ho, W. K., & So, I. (1994). Effects of adriamycin on ionic currents in single cardiac myocytes of the rabbit. Journal of Molecular and Cellular Cardiology, 26, 163–172.

    Article  PubMed  CAS  Google Scholar 

  15. Wang, Y. X., & Korth, M. (1995). Effects of doxorubicin on excitation-contraction coupling in guinea pig ventricular myocardium. Circulation Research, 76, 645–653.

    Article  PubMed  CAS  Google Scholar 

  16. Ducroq, J., Moha ou Maati, H., Guilbot, S., Dilly, S., Laemmel, E., Pons-Himbert, C., et al. (2010). Dexrazoxane protects the heart from acute doxorubicin-induced QT prolongation: A key role for I(Ks). British Journal of Pharmacology, 159, 93–101.

    Article  PubMed  CAS  Google Scholar 

  17. Lazarus, M. L., Rossner, K. L., & Anderson, K. M. (1980). Adriamycin-induced alterations of the action potential in rat papillary muscle. Cardiovascular Research, 14, 446–450.

    Article  PubMed  CAS  Google Scholar 

  18. Doherty, J. D., & Cobbe, S. M. (1990). Electrophysiological changes in animal model of chronic cardiac failure. Cardiovascular Research, 24, 309–316.

    Article  PubMed  CAS  Google Scholar 

  19. Shenasa, H., Calderone, A., Vermeulen, M., Paradis, P., Stephens, H., Cardinal, R., et al. (1990). Chronic doxorubicin induced cardiomyopathy in rabbits: Mechanical, intracellular action potential, and beta adrenergic characteristics of the failing myocardium. Cardiovascular Research, 24, 591–604.

    Article  PubMed  CAS  Google Scholar 

  20. Venditti, P., Balestrieri, M., De Leo, T., & Di Meo, S. (1998). Free radical involvement in doxorubicin-induced electrophysiological alterations in rat papillary muscle fibres. Cardiovascular Research, 38, 695–702.

    Article  PubMed  CAS  Google Scholar 

  21. Dhein, S., Garbade, J., Rouabah, D., Abraham, G., Ungemach, F. R., Schneider, K., et al. (2006). Effects of autologous bone marrow stem cell transplantation on beta-adrenoceptor density and electrical activation pattern in a rabbit model of non-ischemic heart failure. Journal of Cardiothoracic Surgery, 1, 17.

    Article  PubMed  Google Scholar 

  22. Tong, J., Ganguly, P. K., & Singal, P. K. (1991). Myocardial adrenergic changes at two stages of heart failure due to adriamycin treatment in rats. American Journal of Physiology, 260, H909–H916.

    PubMed  CAS  Google Scholar 

  23. Siveski-Iliskovic, N., Kaul, N., & Singal, P. K. (1994). Probucol promotes endogenous antioxidants and provides protection against adriamycin-induced cardiomyopathy in rats. Circulation, 89, 2829–2835.

    Article  PubMed  CAS  Google Scholar 

  24. Kazachenko, A. A., Okovityĭ, S. V., Kulikov, A. N., Gustaĭnis, K. R., Nagornyĭ, M. B., Shulenin, S. N., et al. (2008). Comparative characteristics of some pharmacological models of chronic heart failure. Eksperimental’naia i Klinicheskaia Farmakologiia, 71, 16–19.

    PubMed  CAS  Google Scholar 

  25. Millar, C. K., Kralios, F. A., & Lux, R. L. (1985). Correlation between refractory periods and activation-recovery intervals from electrograms: Effects of rate and adrenergic interventions. Circulation, 72, 1372–1379.

    Article  PubMed  CAS  Google Scholar 

  26. Coronel, R., de Bakker, J. M., Wilms-Schopman, F. J., Opthof, T., Linnenbank, A. C., Belterman, C. N., et al. (2006). Monophasic action potentials and activation recovery intervals as measures of ventricular action potential duration: Experimental evidence to resolve some controversies. Heart Rhythm, 3, 1043–1050.

    Article  PubMed  Google Scholar 

  27. Binah, O., Cohen, I. S., & Rosen, M. R. (1983). The effects of adriamycin on normal and ouabain-toxic canine Purkinje and ventricular muscle fibers. Circulation Research, 53, 655–662.

    Article  PubMed  CAS  Google Scholar 

  28. Casis, O., Iriarte, M., Gallego, M., & Sánchez-Chapula, J. A. (1998). Differences in regional distribution of K + current densities in rat ventricle. Life Sciences, 63, 391–400.

    Article  PubMed  CAS  Google Scholar 

  29. Aimond, F., Alvarez, J. L., Rauzier, J. M., Lorente, P., & Vassort, G. (1999). Ionic basis of ventricular arrhythmias in remodeled rat heart during long-term myocardial infarction. Cardiovascular Research, 42, 402–415.

    Article  PubMed  CAS  Google Scholar 

  30. Varró, A., & Baczkó, I. (2011). Cardiac ventricular repolarization reserve: A principle for understanding drug-related proarrhythmic risk. British Journal of Pharmacology, 164, 14–36.

    Article  PubMed  Google Scholar 

  31. Kilickap, S., Barista, I., Akgul, E., Aytemir, K., Aksoy, S., & Tekuzman, G. (2007). Early and late arrhythmogenic effects of doxorubicin. Southern Medical Journal, 100, 262–265.

    Article  PubMed  Google Scholar 

  32. Arbel, Y., Swartzon, M., & Justo, D. (2007). QT prolongation and Torsades de Pointes in patients previously treated with anthracyclines. Anti-Cancer Drugs, 18, 493–498.

    Article  PubMed  CAS  Google Scholar 

  33. Dragojevic-Simic, V. M., Dobric, S. L., Bokonjic, D. R., Vucinic, Z. M., Sinovec, S. M., Jacevic, V. M., et al. (2004). Amifostine protection against doxorubicin cardiotoxicity in rats. Anti-Cancer Drugs, 15, 169–178.

    Article  PubMed  CAS  Google Scholar 

  34. Ammar, El-S. M., Said, S. A., Suddek, G. M., & El-Damarawy, S. L. (2011). Amelioration of doxorubicin-induced cardiotoxicity by deferiprone in rats. Canadian Journal of Physiology and Pharmacology, 89, 269–276.

    Article  CAS  Google Scholar 

  35. Ewer, M. S., & Ewer, S. M. (2010). Cardiotoxicity of anticancer treatments: What the cardiologist needs to know. Nature Reviews Cardiology, 7, 564–575.

    Article  PubMed  Google Scholar 

  36. Chauhan, V. S., Downar, E., Nanthakumar, K., Parker, J. D., Ross, H. J., Chan, W., et al. (2006). Increased ventricular repolarization heterogeneity in patients with ventricular arrhythmia vulnerability and cardiomyopathy: A human in vivo study. American Journal of Physiology Heart and Circulatory Physiology, 290, H79–H86.

    Article  PubMed  CAS  Google Scholar 

  37. Akar, F. G. (2010). Left ventricular repolarization heterogeneity as an arrhythmic substrate in heart failure. Minerva Cardioangiologica, 58, 205–212.

    PubMed  CAS  Google Scholar 

  38. Ajijola, O. A., Nandigam, K. V., Chabner, B. A., Orencole, M., Dec, G. W., Ruskin, J. N., et al. (2008). Usefulness of cardiac resynchronization therapy in the management of Doxorubicin-induced cardiomyopathy. The American Journal of Cardiology, 101, 1371–1372.

    Article  PubMed  Google Scholar 

  39. Tsvetkova, A. S., Kibler, N. A., Nuzhny, V. P., Shmakov, D. N., & Azarov, J. E. (2011). Acute effects of pacing site on repolarization and haemodynamics of the canine ventricles. Europace, 13, 889–896.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by the Ural Branch of the Russian Academy of Sciences (the program “Basic Sciences to Medicine,” project No. 12-P-4-1003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey N. Kharin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharin, S.N., Krandycheva, V.V., Strelkova, M.V. et al. Doxorubicin-induced Changes of Ventricular Repolarization Heterogeneity: Results of a Chronic Rat Study. Cardiovasc Toxicol 12, 312–317 (2012). https://doi.org/10.1007/s12012-012-9172-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-012-9172-0

Keywords

Navigation