Skip to main content
Log in

The Toxicological Effects in Brain of Mice Following Exposure to Cerium Chloride

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

An Erratum to this article was published on 22 May 2012

Abstract

Cerium (Ce) compounds are now widely applied in medicine, agriculture, animal breeding, and daily life; however, the effects of Ce on human body, especially on the central nervous system, are still unclear. In order to investigate whether Ce exposure cause neurotoxicological effects, ICR mice were exposed to CeCl3 through intragastric administration at 0, 2, 10, and 20 mg/kg body weight doses everyday for 60 days. The behaviors of spatial recognition memory, brain histopathology, the brain elements and neurochemicals, as well as enzymes activities in mice were determined. The Y-maze test showed that CeCl3 exposure could significantly impair the behaviors of spatial recognition memory. Specifically, in these Ln3+-treated mice, the contents of Ca, Mg, Na, K, Fe, and Zn in brain were significantly altered, the activities of Na+/K+-ATPase, Ca2+-ATPase, Ca2+/Mg2+-ATPase, acetylcholine esterase, and nitric oxide synthase were significantly inhibited; monoamines neurotransmitters such as norepinephrine, dopamine, and 5-hydroxytryptamine were significantly decreased, while the contents of acetylcholine, glutamate, and nitric oxide were significantly increased. These results indicated that CeCl3 exposure could impair the learning ability, which is attributed to the disturbance of the homeostasis of trace elements, enzymes, and neurotransmitter systems in the mouse brain. Therefore, our study aroused the attention of Ln application and long-term exposure effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ni JZ (2002) Bioinorganic chemistry of rare earth elements. Science, Beijing, pp 1–12

    Google Scholar 

  2. Hu Z, Richter H, Sparovek G, Schnug E (2004) Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: a review. J Plant Nutr 27:183–220

    Article  CAS  Google Scholar 

  3. Kostova I (2005) Synthetic and natural coumarins as cytotoxic agents. Curr Med Chem Anticancer Agents 5:29–46

    Article  PubMed  CAS  Google Scholar 

  4. Liang L, D'Haese PC, Lamberts LV, Van de Vyver FL, De Bore E (1991) Determination of gadolinium in biological materials using graphite furnace atomic absorption spectrometry with a tantalum boat after solvent extraction. Anal Chem 63:423

    Article  PubMed  CAS  Google Scholar 

  5. Gorbunov AV, Frontasyeva MV, Gundorina SF, Onischenko TL, Maksjuta BB, Pal CS (1992) Effect of agricultural use of phosphogypsum on trace elements in soils and vegetation. Sci Total Environ 122:337–346

    Article  CAS  Google Scholar 

  6. Shimada H, Nagano M, Funakoshi T, Kojima S (1996) Pulmonary toxicity of systemic terbium chloride in mice. J Toxicol Environ Health 48(1):81–92

    Article  PubMed  CAS  Google Scholar 

  7. Zhu WF, Xu SQ, Shao PP, Zhang H, Wu DS, Yang WJ, Feng J (1997) Bioelectrical activity of the central nervous system among populations in a rare earth element area. Biol Trace Elem Res 57:71–77

    Article  PubMed  CAS  Google Scholar 

  8. Goetz L, Bignoli G, Sabbioni E (1982) Mobilization of heavy metal from coal-fired power plants: potential impact on ground water in quality of groundwater. Stud Environ Sci 17:261–264

    Article  Google Scholar 

  9. Sabbioni E, Pietra R, Gaglione P, Vocaturo G, Colombo F, Zanoni M, Rodi F (1982) Long-term occupational risk of rare-earth pneumoconiosis: a case report as investigated by neutron activation analysis. Sci Total Environ 26:19–32

    Article  PubMed  CAS  Google Scholar 

  10. Li ZF, Wu HF, Zhang XY, Li XJ, Liao PQ, Li WS, Pei FK (2006) Investigation on the acute biochemical effects of light rare earths (lanthanum and cerium) by NMR-based metabonomic approaches. Chem J Chin Univ 27:438–442

    Google Scholar 

  11. Liao PQ, Zhang XY, Wang T, Sheng LW, Wu YJ, Li XJ, Ni JZ, Pei FK (2008) Studies on the acute biochemical effects of Nd (NO3)3 by nuclear magnetic resonance-based metabonomics. Chin J Anal Chem 36:426–432

    CAS  Google Scholar 

  12. Liao PQ, Wu HF, Zhang XY, Jing LX, Feng LZ, Sheng LW, Wu YJ, Pei FK (2006) Comparative investigation on acute biological effect of lanthanum and cerium by MAS 1H NMR-based metabonomic approach. Chem J Chin Univ 27:1448–1452

    CAS  Google Scholar 

  13. Liu J, Li N, Ma LL, Duan YM, Wang J, Zhao XY, Hong FS (2010) Mechanism of the splenic injury in mice caused by lanthanides. J Alloys Compd 489:708–713

    Article  CAS  Google Scholar 

  14. Fei M, Li N, Liu J, Gong XL, Duan YM, Zhao XY, Wang H, Hong FS (2011) Oxidative stress in the liver of mice caused by lanthanoides. Biol Trace Elem Res 139:72–80

    Article  PubMed  CAS  Google Scholar 

  15. Zhao HQ, Cheng Z, Hu RP, Cheng J, Hong MM, Zhou M, Gong XL, Hong FS (2011) Oxidative injury in the brain of mice caused by lanthanides. Biol Trace Elem Res. doi:10.1007/s12011-010-8759-1

  16. Fei M, Li N, Liu J, Wang SS, Gong XL, Duan YM, Zhao XY, Wang H, Hong FS (2010) The mechanism of liver injury in mice caused by lanthanoides. Biol Trace Elem Res. doi:10.1007/s12011-010-8698-x

  17. Zhu WF, Xu SQ, Zhang H, Shao PP, Wu DS, Yang WJ, Feng J (1996) Investigation of children intelligence quotient in REE mining area: bio-effect study of REE mining area in South Jiangxi. Chin Sci Bull 41:914–916

    Google Scholar 

  18. Fan GQ, Yuan ZK, Zheng HL, Liu ZJ (2004) Study on the effects of exposure to rare earth elements and health-responses in children aged 7–10 years. J Hyg Res 33:23–28

    Google Scholar 

  19. Feng LX, Xiao HQ, He X, Li ZJ, Li FL, Liu NQ, Chai ZF, Zhao YL, Zhang ZY (2006) Long-term effects of lanthanum intake on the neurobehavioral development of the rat. Neurotoxicol Teratol 28(1):119–124

    Article  PubMed  CAS  Google Scholar 

  20. Feng LX, Xiao HQ, He X, Li ZJ, Li FL, Liu NQ, Zhao YL, Huang YY, Zhang ZY, Chai ZF (2006) Neurotoxicological consequence of long-term exposure to lanthanum. Toxicol Lett 165:112–120

    Article  PubMed  CAS  Google Scholar 

  21. Che Y, Cui YH, Jiang XH (2009) Effects of lanthanum chloride administration in prenatal stage on one-trial passive avoidance learning in chicks. Biol Trace Elem Res 127:37–44

    Article  PubMed  CAS  Google Scholar 

  22. Yang JH, Liu QF, Zhang LF, Wu SW, Qi M, Lu SA, Xi Q, Cai Y (2009) Lanthanum chloride impairs memory, decreases pCaMK IV, pMAPK and pCREB expression of hippocampus in rats. Toxicol Lett 190:208–214

    Article  PubMed  CAS  Google Scholar 

  23. Akwa Y, Ladurelle N, Covey DF, Baulieu EE (2001) The synthetic enantiomer of pregnenolone sulfate is very active on memory in rats and mice, even more so than its physiological neurosteroid counterpart: distinct mechanisms? Proc Natl Acad Sci USA 98:14033–14037

    Article  PubMed  CAS  Google Scholar 

  24. Dellu F, Contarino A, Simon H, Koob GF, Gold LH (2000) Genetic differences in response to novelty and spatial memory using a two-trial recognition task in mice. Neurobiol Learn Mem 73:31–48

    Article  PubMed  CAS  Google Scholar 

  25. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  26. Potter PE, Meek JL, Neff NH (1983) Acetylcholine and choline in neuronal tissuemeasured by HPLC with electrochemical detection. J Neurochem 41:188–194

    Article  PubMed  CAS  Google Scholar 

  27. Evans CH (1990) Biochemistry of the lanthanides. Plenum, New York, pp 25–31

    Google Scholar 

  28. Przywara DA, Bhave SV, Bhave A, Chowdhury PS, Wakade TD, Wakade AR (1992) Activation of K+ channels by lanthanum contributes to the block of transmitter release in chick and rat sympathetic neurons. J Membr Biol 125:155–162

    PubMed  CAS  Google Scholar 

  29. Parsons JT, David AS, Robert JD, Severn BC (2004) Neuronal specific endoplasmic reticulum Mg2+/Ca2+-ATPase Ca2+ sequestration in mixed primary hippocampal culture homogenates. Anal Biochem 330:130–139

    Article  PubMed  CAS  Google Scholar 

  30. Liapi C, Zarros A, Theocharis S, Al-Humadi H, Anifantaki F, Gkrouzman E, Mellios Z, Skandal N, Tsakiris S (2009) The neuroprotective role of l-cysteine towards the effects of short-term exposure to lanthanum on the adult rat brain antioxidant status and the activities of acetylcholinesterase, (Na+, K+)- and Mg2+-ATPase. Biometals 22:329–335

    Article  PubMed  CAS  Google Scholar 

  31. Basu A, Chakrabarty K, Chatterjee GC (1984) The effects of lanthanum chloride administration in newborn chicks on glutamate uptake and release by brain synaptosomes. Toxicol Lett 20:303–308

    Article  PubMed  CAS  Google Scholar 

  32. Erecinska M, Silver IA (1989) ATP and brain function. J Cereb Blood Flow Metab 9:2–19

    Article  PubMed  CAS  Google Scholar 

  33. Yu SP (2003) Na+, K+-ATPase: the new face of an old player in pathogenesis and apoptotic/hybrid cell death. Biochem Pharmacol 66:1601–1609

    Article  PubMed  CAS  Google Scholar 

  34. Kadekaro M, Crane AM, Sokoloff L (1985) Differential effects of electrical stimulation of nerve on metabolic activity in spinal cord and dorsal root ganglion in the rat. Proc Natl Acad Sci USA 82:6010–6013

    Article  PubMed  CAS  Google Scholar 

  35. Vallee BL, Falchuk KH (1994) The biochemical basis of zinc physiology. Physiol Rev 73:79–118

    Google Scholar 

  36. Frederickson CJ, Danscher G (1998) Nutritional modification of brain function. Academic, New York, pp 289–306

    Google Scholar 

  37. Gordon EF, Bond JT, Gordon RC, Denny MR (1982) Zinc deficiency and behavior: a developmental perspective. Physiol Behav 28:893–987

    Article  PubMed  CAS  Google Scholar 

  38. Halas ES, Eberhardt MJ, Diers MA, Sandstead HH (1983) Learning and memory impairment in adult rats due to severe zinc deficiency during lactation. Physiol Behav 30:371–381

    Article  PubMed  CAS  Google Scholar 

  39. Takeda A, Akiyama T, Sawashita J, Okada S (1994) Brain uptake of trace metals: zinc and manganese in rats. Brain Res 640:341–344

    Article  PubMed  CAS  Google Scholar 

  40. Coyle JT, Price DL, Delong MR (1983) Alzheimer's disease: a disorder of cortical cholinergic innervation. Science 219:1184–1189

    Article  PubMed  CAS  Google Scholar 

  41. Gibson GE, Duffy TE (1981) Impaired synthesis of acetylcholine by mild hypoxic hypoxia or nitrous oxide. J Neurochem 36:28–33

    Article  PubMed  CAS  Google Scholar 

  42. Tian J, Su YJ, Gong ML, Lei HY, Yang YS (1997) Effect of Ce(NO3)3 on acetylcholinesterase activity. Acta Scientia rum Naturalium Universitatis Sunyatseni 38:121–123

    Google Scholar 

  43. Nisikawa Y, Shimazoe T, Shibata S, Watanabe S (2002) Time-dependent effect of glutamate on long-term potentiation in the suprachiasmatic nucleus of rats. Jpn J Pharmacol 90:201–204

    Article  PubMed  CAS  Google Scholar 

  44. Hölscher C (1997) Nitric oxide, the enigmatic neuronal messenger: its role in synaptic plasticity. Trends Neurosci 20:298–303

    Article  PubMed  Google Scholar 

  45. Lin AMY (1999) Recovery by NO of the iron-attenuated dopamine dynamics in nigrostriatal system of rat brain. Neurosci Res 34:133–139

    Article  PubMed  CAS  Google Scholar 

  46. Prast H, Philippu A (2001) Nitric oxide as modulator of neuronal function. Prog Neurobiol 64:51–68

    Article  PubMed  CAS  Google Scholar 

  47. Iverson LL (1986) The cholinergic hypothesis of dementia. Trends Pharmacol Sci 2(Suppl):44–45

    Google Scholar 

  48. Simon H, Taghzouti K, Moal ML (1986) Deficits in spatial memory tasks following lesions of septal dopaminergic terminals in the rat. Behav Brain Res 19:7–16

    Article  PubMed  CAS  Google Scholar 

  49. John LB (2001) Iron-deficiency anemia: examining the nature and magnitude of the public health problem. J Nutr 131:568s–580s

    Google Scholar 

  50. Youdim MBH, Green AR (1978) Iron deficiency and neurotransmitter synthesis and function. Proc Nutr Soc 37:173–179

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 30901218) and the National New Ideas Foundation of Student of China (grant no.5731511410).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fashui Hong.

Additional information

Haiquan Zha, Zhe Cheng, and Jie Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zha, H., Cheng, Z., Chen, J. et al. The Toxicological Effects in Brain of Mice Following Exposure to Cerium Chloride. Biol Trace Elem Res 144, 872–884 (2011). https://doi.org/10.1007/s12011-011-9045-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9045-6

Keywords

Navigation