Skip to main content
Log in

Evaluation of Hypoglycemic Activity of Inorganic Constituents in Nelumbo nucifera Seeds on Streptozotocin-Induced Diabetes in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The seeds of Nelumbo nucifera (Lotus) have been used in the traditional system of medicine for various ailments including diabetes. The present study was aimed at analyzing the levels of biologically important trace elements in the lotus seeds by atomic absorption spectroscopy and evaluating the hypoglycemic properties of seed ash on streptozotocin-induced diabetes in rats. Diabetic rats treated with lotus seed ash at a concentration of 200 mg/kg body weight orally for 30 days exhibited significant hypoglycemic activity. The presence of trace elements in appreciable amounts in the seeds may play a direct or indirect role on insulin secretion or its action in a synergetic manner. The hypoglycemic activity of the ash was comparable with glyclazide. The role of trace elements in disorders related to diabetes is also discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zimmet P (2003) The burden of type 2 diabetes: are we doing enough? Diabetes Metab 29:6S9–6S18

    Article  PubMed  CAS  Google Scholar 

  2. Mohan V, Sandeep S, Deepa R et al (2007) Epidemiology of type 2 diabetes: Indian scenario. Indian J Med Res 125:217–230

    PubMed  CAS  Google Scholar 

  3. WHO (2002) WHO launches the first global strategy on traditional and alternative medicine. Cent Eur J Public Health 10:145–156

    Google Scholar 

  4. Grover JK, Vats V (2001) Shifting paradigm: from conventional to alternative medicines—an introduction on traditional Indian medicines. Asia Pacific Biotech News 5:28–32

    Article  Google Scholar 

  5. Grover JK, Yadav S, Vats V (2002) Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 81:81–100

    Article  PubMed  CAS  Google Scholar 

  6. Serfor-Armah Y, Akaho EHK, Nyarko BJB et al (2003) Application of instrumental neutron activation analysis to plant medicines in Ghana: a review. J Radioanal Nucl Chem 257:125–128

    Article  CAS  Google Scholar 

  7. Rai S, Wahile A, Mukherjee K et al (2006) Antioxidant activity of Nelumbo nucifera (sacred lotus) seeds. J Ethnopharmacol 104:322–327

    Article  PubMed  Google Scholar 

  8. Mitra R, Kapoor LD (1976) Kamala—the national flower of India—its ancient history and uses in Indian medicine. Indian J Hist Sci 11:125–132

    PubMed  CAS  Google Scholar 

  9. Liu CP, Tsai WJ, Lin YL (2004) The extracts from Nelumbo nucifera suppress cell cycle progression, cytokine genes expression, and cell proliferation in human peripheral blood mononuclear cells. Life Sci 75:699–716

    Article  PubMed  CAS  Google Scholar 

  10. Zhang YJ, Gu ZH, Xu BM (1985) Studies of ancient Taizi lotus. Seeds 6:1–3

    CAS  Google Scholar 

  11. Qian JQ (2002) Cardiovascular pharmacological effects of bisbenzylisoquinoline alkaloid derivatives. Acta Pharmacol Sin 23:1086–1092

    PubMed  CAS  Google Scholar 

  12. Mukherjee PK, Mukherjee D, Maji AK (2009) The sacred lotus (Nelumbo nucifera)—phytochemical and therapeutic profile. J Pharm Pharmacol 61:407–422

    PubMed  CAS  Google Scholar 

  13. Kar A, Choudhary BK, Bandyopadhyay NG (1999) Preliminary studies on the inorganic constituents of some indigenous hypoglycaemic herbs on oral glucose tolerance test. J Ethnopharmacol 64:179–184

    Article  PubMed  CAS  Google Scholar 

  14. U. S. Ghemisis, Steel (1938) Determination of vanadium, in sampling and analysis of carbon and alloy steels. Reinhold, New York

    Google Scholar 

  15. Rakieten N, Rakieten ML, Nadkarni MR (1963) Studies on the diabetogenic action of streptozotocin (NSC-37917). Cancer Chemother Rep 29:91–98

    Google Scholar 

  16. Sasaki T, Matsy S, Sonae A (1972) Effect of acetic acid concentration on the colour reaction in the O-toluidine boric acid method for blood glucose estimation. Rinsh Kagaku 1:346–353

    CAS  Google Scholar 

  17. Natelson S, Scott ML, Beffa C (1951) A rapid method for the estimation of urea in biologic fluids. Am J Clin Pathol 21:275–281

    PubMed  CAS  Google Scholar 

  18. Drabkin DL, Austin JH (1932) Spectrophotometric constants for common hemoglobin derivatives in human, dog and rabbit blood. J Biol Chem 98:719–733

    CAS  Google Scholar 

  19. Nayak SS, Pattabiraman TN (1981) A new colorimetric method for the estimation of glycosylated hemoglobin. Clin Chim Acta 109:267–274

    Article  PubMed  CAS  Google Scholar 

  20. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  21. Brod J, Sirota JH (1948) The renal clearance of endogenous “creatinine” in man. J Clin Invest 27:645–654

    Article  CAS  Google Scholar 

  22. Drews J (2002) Drug discovery: a historical perspective. Science 287:1960–1964

    Article  Google Scholar 

  23. Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4:206–220

    Article  PubMed  CAS  Google Scholar 

  24. Oubré AY, Carlson TJ, King SR et al (1997) From plant to patient: an ethnomedical approach to the identification of new drugs for the treatment of NIDDM. Diabetologia 40:614–617

    Article  PubMed  Google Scholar 

  25. Naga Raju GJ, Sarita P, Ramana Murty GA et al (2006) Estimation of trace elements in some anti-diabetic medicinal plants using PIXE technique. Appl Radiat Isot 64:893–900

    Article  PubMed  CAS  Google Scholar 

  26. Pulido N, Suarez A, Casanova B (1997) Gliclazide treatment of streptozotocin diabetic rats restores GLUT4 protein content and basal glucose uptake in skeletal muscle. Metabolism 46:10–13

    Article  PubMed  CAS  Google Scholar 

  27. al-Shamaony L, al-Khazraji SM, Twaij HA (1994) Hypoglycaemic effect of Artemisia herba alba. II. Effect of a valuable extract on some blood parameters in diabetic animals. J Ethnopharmacol 43:167–171

    Article  PubMed  CAS  Google Scholar 

  28. Koenig RJ, Peterson CM, Jones RL et al (1976) Correlation of glucose regulation and hemoglobin AIc in diabetes mellitus. N Engl J Med 295:417–420

    Article  PubMed  CAS  Google Scholar 

  29. Monnier VM, Cerami A (1982) Non-enzymatic glycosylation and browning of proteins in diabetes. Clin Endocrinol Metab 11:431–452

    Article  PubMed  CAS  Google Scholar 

  30. Larsen ML, Hørder M, Mogensen EF (1990) Effect of long-term monitoring of glycosylated hemoglobin levels in insulin-dependent diabetes mellitus. N Engl J Med 323:1021–1025

    Article  PubMed  CAS  Google Scholar 

  31. Yates AP, Laing I (2002) Age-related increase in haemoglobin A1c and fasting plasma glucose is accompanied by a decrease in beta cell function without change in insulin sensitivity: evidence from a cross-sectional study of hospital personnel. Diabet Med 19:254–258

    Article  PubMed  CAS  Google Scholar 

  32. Chang AT, Noble J (1979) Estimation of HbA1C like glycosylated proteins in kidneys of streptozotocin diabetes and controlled rats. Diabetes 28:408–415

    Google Scholar 

  33. Rosenlund BL (1993) Effects of insulin on free amino acids in plasma and the role of the amino acid metabolism in the etiology of diabetic microangiopathy. Biochem Med Metab Biol 49:375–391

    Article  PubMed  CAS  Google Scholar 

  34. Fando JL, Jolin T, Salinas M et al (1985) The effect of streptozotocin diabetes on brain protein synthesis in the rat. Diabete Metab 11:92–97

    PubMed  CAS  Google Scholar 

  35. Dighe RR, Rojas FJ, Birnbaumer L et al (1984) Glucagon-stimulable adenylyl cyclase in rat liver. The impact of streptozotocin-induced diabetes mellitus. J Clin Invest 73:1013–1023

    Article  PubMed  CAS  Google Scholar 

  36. Almdal TP, Vilstrup H (1988) Strict insulin therapy normalises organ nitrogen contents and the capacity of urea nitrogen synthesis in experimental diabetes in rats. Diabetologia 31:114–118

    Article  PubMed  CAS  Google Scholar 

  37. Bräunlich H, Marx F, Fleck C et al (1997) Kidney function in rats after 5/6 nephrectomy (5/6 NX); effort of treatment with vitamin E. Exp Toxicol Pathol 49:135–139

    PubMed  Google Scholar 

  38. Kazi TG, Afridi HI, Kazi N et al (2008) Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. Biol Trace Elem Res 122:1–18

    Article  PubMed  CAS  Google Scholar 

  39. Heyliger CE, Tahiliani AG, McNeill JH (1985) Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats. Science 227:1474–1477

    Article  PubMed  CAS  Google Scholar 

  40. Goldfine AB, Simonson DC, Folli F et al (1995) Metabolic effects of sodium metavanadate in humans with insulin-dependent and noninsulin-dependent diabetes mellitus in vivo and in vitro studies. J Clin Endocrinol Metab 80:3311–3320

    Article  PubMed  CAS  Google Scholar 

  41. Cam MC, Brownsey RW, McNeill JH (2000) Mechanisms of vanadium action: insulin-mimetic or insulin-enhancing agent? Can J Physiol Pharmacol 78:829–847

    Article  PubMed  CAS  Google Scholar 

  42. Ramachandran B, Kandaswamy M, Narayanan V et al (2003) Insulin mimetic effects of macrocyclic binuclear oxovanadium complexes on streptozotocin-induced experimental diabetes in rats. Diabetes Obes Metab 5:455–461

    Article  PubMed  CAS  Google Scholar 

  43. Ramachandran B, Ravi K, Narayanan V et al (2004) Effect of macrocyclic binuclear oxovanadium complex on tissue defense system in streptozotocin-induced diabetic rats. Clin Chim Acta 345:141–150

    Article  PubMed  CAS  Google Scholar 

  44. Ramachandran B, Ravi K, Narayanan V et al (2004) Protective effect of macrocyclic binuclear oxovanadium complex on oxidative stress in pancreas of streptozotocin induced diabetic rats. Chem Biol Interact 149:9–21

    Article  PubMed  CAS  Google Scholar 

  45. Ramachandran B, Sekar DS, Kandaswamy M et al (2004) Hypoglycemic effect of macrocyclic binuclear oxovanadium (IV) complex on streptozotocin-induced diabetic rats. Exp Diabesity Res 5:137–142

    Article  PubMed  CAS  Google Scholar 

  46. Ramachandran B, Subramanian S (2005) Amelioration of diabetic dyslipidemia by macrocyclic binuclear oxovanadium complex on streptozotocin induced diabetic rats. Mol Cell Biochem 272:157–164

    Article  PubMed  CAS  Google Scholar 

  47. Scott DA (1934) Crystalline insulin. Biochem J 28:1592–1602

    PubMed  CAS  Google Scholar 

  48. Chimienti F, Devergnas S, Favier A et al (2004) Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53:2330–2337

    Article  PubMed  CAS  Google Scholar 

  49. Sladek R, Rocheleau G, Rung J et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885

    Article  PubMed  CAS  Google Scholar 

  50. Yoshikawa Y, Ueda E, Miyake H (2001) Insulinomimetic bis(maltolato)zinc(II) complex: blood glucose normalizing effect in KK-A(y) mice with type 2 diabetes mellitus. Biochem Biophys Res Commun 281:1190–1193

    Article  PubMed  CAS  Google Scholar 

  51. Yoshikawa Y, Ueda E, Sakurai H et al (2003) Anti-diabetes effect of Zn(II)/carnitine complex by oral administration. Chem Pharm Bull (Tokyo) 51:230–231

    Article  CAS  Google Scholar 

  52. Yoshikawa Y, Ueda E, Suzuki Y (2001) New insulinomimetic zinc(II) complexes of alpha-amino acids and their derivatives with Zn(N2O2) coordination mode. Chem Pharm Bull (Tokyo) 49:652–654

    Article  CAS  Google Scholar 

  53. Adachi Y, Yoshida J, Kodera Y et al (2004) A new insulin-mimetic bis(allixinato)zinc(II) complex: structure–activity relationship of zinc(II) complexes. J Biol Inorg Chem 9:885–893

    Article  PubMed  CAS  Google Scholar 

  54. Adachi Y, Yoshida J, Kodera Y et al (2006) Oral administration of a zinc complex improves type 2 diabetes and metabolic syndromes. Biochem Biophys Res Commun 351:165–170

    Article  PubMed  CAS  Google Scholar 

  55. Moustafa SA (2004) Zinc might protect oxidative changes in the retina and pancreas at the early stage of diabetic rats. Toxicol Appl Pharmacol 201:149–155

    Article  PubMed  CAS  Google Scholar 

  56. Faure P, Benhamou PY, Perard A et al (1995) Lipid peroxidation in insulin-dependent diabetic patients with early retina degenerative lesions: effects of an oral zinc supplementation. Eur J Clin Nutr 49:282–288

    PubMed  CAS  Google Scholar 

  57. Tang X, Shay NF (2001) Zinc has an insulin-like effect on glucose transport mediated by phosphoinositol-3-kinase and Akt in 3T3-L1 fibroblasts and adipocytes. J Nutr 131:1414–1420

    PubMed  CAS  Google Scholar 

  58. Jansen J, Karges W, Rink L (2009) Zinc and diabetes—clinical links and molecular mechanisms. J Nutr Biochem 20:399–417

    Article  PubMed  CAS  Google Scholar 

  59. Anderson RA (1998) Chromium, glucose intolerance and diabetes. J Am Coll Nutr 17:548–555

    PubMed  CAS  Google Scholar 

  60. Anderson RA, Cheng N, Bryden NA et al (1997) Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes 46:1786–1791

    Article  PubMed  CAS  Google Scholar 

  61. Ravina A, Slezak L, Mirsky N et al (1999) Reversal of corticosteroid-induced diabetes mellitus with supplemental chromium. Diabet Med 16:164–167

    Article  PubMed  CAS  Google Scholar 

  62. Jain SK, Kannan K (2001) Chromium chloride inhibits oxidative stress and TNF-alpha secretion caused by exposure to high glucose in cultured U937 monocytes. Biochem Biophys Res Commun 289:687–691

    Article  PubMed  CAS  Google Scholar 

  63. Govindaraju K, Ramasami T, Ramaswamy D (1989) Chromium(III)-insulin derivatives and their implication in glucose metabolism. J Inorg Biochem 35:137–147

    Article  PubMed  CAS  Google Scholar 

  64. Govindaraju K, Ramasami T, Ramaswamy D (1989) Chymotrypsin-catalyzed hydrolysis of chromium (III) derivatives of insulin: evidence for stabilization of the protein through interactions with metal ions. J Inorg Biochem 35:127–135

    Article  PubMed  CAS  Google Scholar 

  65. Rajurkar NS, Damame MM (1998) Mineral content of medicinal plants used in the treatment of diseases resulting from urinary tract disorders. Appl Radiat Isot 49:773–776

    Article  PubMed  CAS  Google Scholar 

  66. de Valk HW (1999) Magnesium in diabetes mellitus. Neth J Med 54:139–146

    Article  PubMed  Google Scholar 

  67. Mills CF (1981) Symposia from the XII International Congress on Nutrition. Prog Clin Biol Res 77:165–171

    Google Scholar 

  68. FAO/WHO (1974) Hand book on human nutritional requirements. FAO Nutritional Studies 28:63–64

    Google Scholar 

  69. Schutte KH (1964) The biology of trace elements: their role in nutrition. Lippincott, Philadelphia

    Google Scholar 

  70. Ravi K, Sekar DS, Subramanian S (2004) Hypoglycemic activity of inorganic constituents in Eugenia jambolana seed on streptozotocin-induced diabetes in rats. Biol Trace Elem Res 99:145–155

    Article  PubMed  CAS  Google Scholar 

  71. Rajasekaran S, Sivagnanam K, Subramanian S (2005) Mineral contents of Aloe vera leaf gel and their role on streptozotocin-induced diabetic rats. Biol Trace Elem Res 108:185–195

    Article  PubMed  CAS  Google Scholar 

  72. Narendhirakannan RT, Subramanian S, Kandaswamy M (2005) Mineral content of some medicinal plants used in the treatment of diabetes mellitus. Biol Trace Elem Res 103:109–115

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramanian Sorimuthu Pillai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mani, S.S., Subramanian, I.P., Pillai, S.S. et al. Evaluation of Hypoglycemic Activity of Inorganic Constituents in Nelumbo nucifera Seeds on Streptozotocin-Induced Diabetes in Rats. Biol Trace Elem Res 138, 226–237 (2010). https://doi.org/10.1007/s12011-010-8614-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8614-4

Keywords

Navigation