Skip to main content
Log in

Synthesis and Characterization of Reduced Graphene Oxide Supported Gold Nanoparticles-Poly(Pyrrole-Co-Pyrrolepropylic Acid) Nanocomposite-Based Electrochemical Biosensor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A conducting poly(pyrrole-co-pyrrolepropylic acid) copolymer nanocomposite film (AuNP-PPy-PPa) incorporating gold nanoparticles (AuNP) was electrochemically grown using a single step procedure over electrochemically reduced graphene oxide (RGO) flakes deposited on a silane-modified indium-tin-oxide (ITO) glass plate. The RGO support base provided excellent mechanical and chemical stability to the polymer nanocomposite matrix. The porous nanostructure of AuNP-PPy-PPa/RGO provided a huge accessible area to disperse AuNP, and it avoided metallic agglomeration within the polymer matrix. The AuNP-PPy-PPa/RGO was characterized by high-resolution transmission electron microscopy (HRTEM), contact angle measurements, Fourier transform infrared spectroscopy (FTIR), and electrochemical techniques. The pendant carboxyl group of AuNP-PPy-PPa/RGO was covalently bonded with myoglobin protein antibody, Ab-Mb, for the construction of a bioelectrode. Electrochemical impedance spectroscopy technique was used for the characterization of the bioelectrode and as an impedimetric biosensor for the detection of human cardiac biomarker, Ag-cMb. The bioelectrode exhibited a linear impedimetric response to Ag-cMb in the range of 10 ng mL−1 to 1 μg mL−1, in phosphate-buffered solution (PBS) (pH 7.4, 0.1 M KCl) with a sensitivity of 92.13 Ω cm2 per decade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dios, A. S. D., & Diaz-Garcia, M. (2010). Analytica Chimica Acta, 666, 1–22.

    Article  Google Scholar 

  2. Singh, R., Premkumar, T., Shin, J., & Geckeler, K. (2010). Chemistry A European Journal, 16, 1728–1743.

    Article  CAS  Google Scholar 

  3. Dong, L., Gari, R. R. S., Li, Z., Craig, M. M., & Hou, S. (2010). Carbon, 48, 781–787.

    Article  CAS  Google Scholar 

  4. Li, Y. J., Gao, W., Ci, L. J., Wang, C. M., & Ajayan, P. M. (2010). Carbon, 48, 1124–1130.

    Article  CAS  Google Scholar 

  5. Shao, Y. Y., Wang, J., Wu, H., Liu, J., Aksay, I. A., & Lin, Y. H. (2010). Electroanalysis, 22, 1027–1036.

    Article  CAS  Google Scholar 

  6. Gan, T., & Hu, S. S. (2011). Microchimica Acta, 175, 1–19.

    Article  CAS  Google Scholar 

  7. Wang, Y., Li, Y. M., Tang, L. H., Lu, J., & Li, J. H. (2009). Electrochemistry Communications, 11, 889–892.

    Article  CAS  Google Scholar 

  8. Wang, C., Zhang, L., Guo, Z. H., Xu, J. G., Wang, H. Y., Zhai, K. F., & Zhuo, X. (2010). Microchimica Acta, 169, 1–6.

    Article  CAS  Google Scholar 

  9. Shan, C. S., Yang, H. F., Han, D. X., Zhang, Q. X., Ivaska, A., & Niu, L. (2009). Langmuir, 25, 12030–12033.

    Article  CAS  Google Scholar 

  10. Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. T., & Ruoff, R. S. (2006). Nature, 442, 282–286.

    Article  CAS  Google Scholar 

  11. Muszynski, R., Seger, B., & Kamat, P. V. (2008). Journal of Physical Chemistry C, 112, 5263–5266.

    Article  CAS  Google Scholar 

  12. Xu, C., Wang, X., & Zhu, J. W. (2008). Journal of Physical Chemistry C, 112, 19841–19845.

    Article  CAS  Google Scholar 

  13. Shan, C. S., Yang, H. F., Han, D. X., Zhang, Q. X., Ivaska, A., & Niu, L. (2010). Biosensors and Bioelectronics, 25, 1070–1074.

    Article  CAS  Google Scholar 

  14. Baby, T. T., Aravind, S. S., Arockiadoss, T., Rakhi, R. B., & Ramaprabhu, S. (2010). Sensors and Actuators B: Chemical, 145, 71–77.

    Article  CAS  Google Scholar 

  15. Geim, A. K., & Novoselov, K. S. (2007). Nature Material, 6, 183–191.

    Article  CAS  Google Scholar 

  16. Jiang, F., Yao, Z., Yue, R., Du, Y., Xu, J., Yang, P., & Wang, C. (2012). International Journal of Hydrogen Energy, 37, 14085–14093.

    Article  CAS  Google Scholar 

  17. Ahuja, T., Mir, I. A., Kumar, D., & Rajesh. (2007). Biomaterials, 28, 791–805.

    Article  CAS  Google Scholar 

  18. Geetha, S., Roa, C. R. K., Vijayan, M., & Trivedi, D. C. (2006). Analytica Chimica Acta, 568, 119–125.

    Article  CAS  Google Scholar 

  19. Ghanbari, K., Bathaie, S. Z., & Mousavi, M. F. (2008). Biosensors and Bioelectronics, 23, 1825–1831.

    Article  CAS  Google Scholar 

  20. Mishra, S. K., Pasricha, R., Biradar, A. M., & Rajesh. (2012). Applied Physics Letters, 100, 053701–053704.

    Article  Google Scholar 

  21. Ren, F., Zhou, W., Du, Y., Yang, P., Wang, C., & Xu, J. (2011). International Journal of Hydrogen Energy, 36, 6414–6421.

    Article  CAS  Google Scholar 

  22. Habibi, B., & Pournaghi-Azar, M. H. (2010). International Journal of Hydrogen Energy, 35, 9318–9328.

    Article  CAS  Google Scholar 

  23. Puri, N., Mishra, S. K., Niazi, A., Biradar, A. M., & Rajesh, E. (2013). Synthetic Metals, 169, 18–24.

    Article  CAS  Google Scholar 

  24. Weber, M., Rau, M., Madlener, K., Elsaesser, A., Bankovic, D., Mitrovic, V., & Hamm, C. (2005). Clinical Biochemistry, 38, 1027–1030.

    Article  CAS  Google Scholar 

  25. Jaffe, A. S., Babuin, L., & Apple, F. S. (2006). Journal of American College of Cardiology, 48, 1–11.

    Article  CAS  Google Scholar 

  26. Ng, S. M., Krishnaswamy, P., Morissey, R., Clopton, P., Fitzgerald, R., & Maisel, A. S. (2001). American Journal of Cardiology, 88, 611–617.

    Article  CAS  Google Scholar 

  27. Torabi, F., Far, H. R. M., Danielsson, B., & Khayyami, M. (2007). Biosensors and Bioelectronics, 22, 1218–1223.

    Article  CAS  Google Scholar 

  28. Mayr, B. M., Kohlbacher, O., Reinert, K., Sturm, M., Gröpl, C., Lange, E., Klein, C., & Huber, C. G. J. (2006). Proteome Research, 5, 414–421.

    Article  CAS  Google Scholar 

  29. Zheng, Q., Liu, Z., & Cai, R. (2005). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61, 1035–1038.

    Article  Google Scholar 

  30. Sun, W., Li, L., Lei, B., Li, T., Ju, X., Wang, X., Li, G., & Sun, Z. (2013). Materials Science and Engineering C, 33, 1907–1913.

    Article  CAS  Google Scholar 

  31. Yu, S., Cao, X., & Yu, M. (2012). Microchemical Journal, 103, 125–130.

    Article  CAS  Google Scholar 

  32. Chang, H. H., Chang, C. K., Tsai, Y. C., & Liao, C. S. (2012). Carbon, 50, 2331–2336.

    Article  CAS  Google Scholar 

  33. Sen, T., & Patra, A. (2009). Journal of Physical Chemistry C, 113, 13125–13132.

    Article  CAS  Google Scholar 

  34. Wang, X., Song, L., Yang, H., Xing, W., Kandola, B., & Hu, Y. (2012). Journal of Material Chemistry, 22, 22037–22043.

    Article  CAS  Google Scholar 

  35. Hsu, F.-H., & Wu, T.-M. (2012). Synthetic Metals, 162, 682–687.

    Article  CAS  Google Scholar 

  36. Kong, J., & Yu, S. (2007). Acta Biochimica et Biophysica Sinica, 39, 549–559.

    Article  CAS  Google Scholar 

  37. Klink, M. J., Iwuoha, E. I., & Ebenso, E. E. (2011). International Journal of Electrochemical Science, 6, 2429–2442.

    CAS  Google Scholar 

  38. Billah, M., Hays, H. C. W., & Millner, P. A. (2008). Microchimica Acta, 160, 447–454.

    Article  CAS  Google Scholar 

  39. Wang, Y., Zhou, Y., Sokolov, J., Rigas, B., Levon, K., & Rafailovich, M. (2008). Biosensors and Bioelectronics, 24, 162–166.

    Article  Google Scholar 

  40. Suprun, E. V., Shilovskaya, A. L., Lisitsa, A. V., Bulko, T. V., Shumyantseva, V. V., & Archakov, A. I. (2011). Electroanalysis, 23, 1051–1057.

    Article  CAS  Google Scholar 

  41. Pakapongpan, S., Palangsuntikul, R., & Surareungchai, W. (2011). Electrochimica Acta, 56, 6831–6836.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. R.C. Budhani, Director, National Physical Laboratory, New Delhi, India, for providing research facilities. One of the authors, Nidhi Puri, is thankful to CSIR for providing Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puri, N., Niazi, A., Srivastava, A.K. et al. Synthesis and Characterization of Reduced Graphene Oxide Supported Gold Nanoparticles-Poly(Pyrrole-Co-Pyrrolepropylic Acid) Nanocomposite-Based Electrochemical Biosensor. Appl Biochem Biotechnol 174, 911–925 (2014). https://doi.org/10.1007/s12010-014-0997-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0997-9

Keywords

Navigation