Skip to main content

Advertisement

Log in

Recombinant Single-Chain Antibody with the Trojan Peptide Penetratin Positioned in the Linker Region Enables Cargo Transfer Across the Blood–Brain Barrier

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Delivery of therapeutic proteins into tissues and across the blood–brain barrier (BBB) is limited by the size and biochemical properties of the proteins. Efficient delivery across BBB is generally restricted to small, highly lipophilic molecules. However, in the last decades, several peptides that can pass cell membranes have been identified. It has been shown that these peptides are also capable of delivering large hydrophilic cargoes into cells and are therefore a powerful biological tool for transporting drugs across cell membranes and even into the brain. We designed and prepared a single-chain antibody fragment (scFvs), specific for the pathological form of the prion protein (PrPSc), where a cell-penetrating peptide (CPP) was used as a linker between the two variable domains of the scFv. The intravenously administered recombinant scFv-CPP was successfully targeted to and delivered into mouse brain cells. Our single-chain antibody fragments are of special interest in view of possible therapeutic reagents design not only for prion diseases but also for other neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABTS:

2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)

CNS:

Central nervous system

CPP:

Cell-penetrating peptides

DAPI:

4′,6-Diamidino-2-phenylindole

Fv:

Antibody variable domains (Vl + Vh)

HRP:

Horseradish peroxidase

IMAC:

Immobilized metal ion affinity chromatography

IPTG:

Isopropyl β-d-1-thiogalactopyranoside

LLH:

scFv in Vl-linker-Vh chain arrangement

PBS:

Phosphate-buffered saline

PrP:

Prion protein

PrPC :

Cellular form of the PrP

PrPSc :

Pathogenic form of the PrP

scFv:

Antibody single-chain fragment

TBS:

Tris-buffered saline

TMB:

3,3′,5,5′-Tetramethylbenzidine

Vh:

Variable domain of the heavy-chain of an antibody

Vl:

Variable domain of the light chain of an antibody

References

  1. Bird, R. E., Hardman, K. D., Jacobson, J. W., Johnson, S., Kaufman, B. M., Lee, S. M., et al. (1988). Single-chain antigen-binding proteins. Science, 242, 423–426.

    Article  CAS  Google Scholar 

  2. Huston, J. S., Levinson, D., Mudgett-Hunter, M., Tai, M. S., Novotný, J., Margolies, M. N., et al. (1988). Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 85, 5879–5883.

    Article  CAS  Google Scholar 

  3. Robert, R., & Wark, K. L. (2012). Engineered antibody approaches for Alzheimer’s disease immunotherapy. Archives of Biochemistry and Biophysics, 526, 132–138.

    Article  CAS  Google Scholar 

  4. Pardridge, W. M. (2007). Drug targeting to the brain. Pharmaceutical Research, 24, 1733–1744.

    Article  CAS  Google Scholar 

  5. Begley, D. J. (2004). Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacology & Therapeutics, 104, 29–45.

    Article  CAS  Google Scholar 

  6. Hanson, L. R., & Frey, W. H. (2008). Intranasal delivery bypasses the blood–brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neuroscience, 9(Suppl 3), S5.

    Article  Google Scholar 

  7. Lindgren, M., Hällbrink, M., Prochiantz, A., & Langel, U. (2000). Cell-penetrating peptides. Trends in Pharmacological Sciences, 21, 99–103.

    Article  CAS  Google Scholar 

  8. Frankel, A. D., & Pabo, C. O. (1988). Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 55, 1189–1193.

    Article  CAS  Google Scholar 

  9. Green, M., & Loewenstein, P. M. (1988). Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell, 55, 1179–1188.

    Article  CAS  Google Scholar 

  10. Joliot, A. H., Triller, A., Volovitch, M., Pernelle, C., & Prochiantz, A. (1991). alpha-2,8-Polysialic acid is the neuronal surface receptor of antennapedia homeobox peptide. New Biologist, 3, 1121–1134.

    CAS  Google Scholar 

  11. Schwarze, S. R., & Dowdy, S. F. (2000). In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends in Pharmacological Sciences, 21, 45–48.

    Article  CAS  Google Scholar 

  12. Dietz, G. P. H., & Bähr, M. (2004). Delivery of bioactive molecules into the cell: the Trojan horse approach. Molecular and Cellular Neurosciences, 27, 85–131.

    Article  CAS  Google Scholar 

  13. Dupont, E., Prochiantz, A., & Joliot, A. (2011). Penetratin story: an overview. Methods in Molecular Biology, 683, 21–29.

    Article  CAS  Google Scholar 

  14. Gratton, J.-P., Yu, J., Griffith, J. W., Babbitt, R. W., Scotland, R. S., Hickey, R., et al. (2003). Cell-permeable peptides improve cellular uptake and therapeutic gene delivery of replication-deficient viruses in cells and in vivo. Nature Medicine, 9, 357–362.

    Article  CAS  Google Scholar 

  15. Jain, M., Chauhan, S. C., Singh, A. P., Venkatraman, G., Colcher, D., & Batra, S. K. (2005). Penetratin improves tumor retention of single-chain antibodies: a novel step toward optimization of radioimmunotherapy of solid tumors. Cancer Research, 65, 7840–7846.

    CAS  Google Scholar 

  16. Schutze-Redelmeier, M. P., Gournier, H., Garcia-Pons, F., Moussa, M., Joliot, A. H., Volovitch, M., et al. (1996). Introduction of exogenous antigens into the MHC class I processing and presentation pathway by Drosophila antennapedia homeodomain primes cytotoxic T cells in vivo. Journal of Immunology, 157, 650–655.

    CAS  Google Scholar 

  17. Théodore, L., Derossi, D., Chassaing, G., Llirbat, B., Kubes, M., Jordan, P., et al. (1995). Intraneuronal delivery of protein kinase C pseudosubstrate leads to growth cone collapse. Journal of Neuroscience, 15, 7158–7167.

    Google Scholar 

  18. Derossi, D., Joliot, A. H., Chassaing, G., & Prochiantz, A. (1994). The third helix of the Antennapedia homeodomain translocates through biological membranes. Journal of Biological Chemistry, 269, 10444–10450.

    CAS  Google Scholar 

  19. Prusiner, S. B. (1998). Prions. Proceedings of the National Academy of Sciences of the United States of America, 95, 13363–13383.

    Article  CAS  Google Scholar 

  20. Müller-Schiffmann, A., & Korth, C. (2008). Vaccine approaches to prevent and treat prion infection: progress and challenges. BioDrugs: Clinical Immunotherapeutics, Biopharmaceuticals and Gene Therapy, 22, 45–52.

    Article  Google Scholar 

  21. Solforosi, L., Criado, J. R., McGavern, D. B., Wirz, S., Sánchez-Alavez, M., Sugama, S., et al. (2004). Cross-linking cellular prion protein triggers neuronal apoptosis in vivo. Science, 303, 1514–1516.

    Article  CAS  Google Scholar 

  22. Alexandrenne, C., Hanoux, V., Dkhissi, F., Boquet, D., Couraud, J.-Y., & Wijkhuisen, A. (2009). Curative properties of antibodies against prion protein: a comparative in vitro study of monovalent fragments and divalent antibodies. Journal of Neuroimmunology, 209, 50–56.

    Article  CAS  Google Scholar 

  23. Čurin Šerbec, V., Bresjanac, M., Popović, M., Pretnar Hartman, K., Galvani, V., Rupreht, R., et al. (2004). Monoclonal antibody against a peptide of human prion protein discriminates between Creutzfeldt-Jacob’s disease-affected and normal brain tissue. Journal of Biological Chemistry, 279, 3694–3698.

    Google Scholar 

  24. Vranac, T., Hartman, K. P., Popović, M., Venturini, A., Žerovnik, E., & Čurin Šerbec, V. (2006). A single prion protein peptide can elicit a panel of isoform specific monoclonal antibodies. Peptides, 27, 2695–2705.

    Article  CAS  Google Scholar 

  25. Koren, S., Kosmač, M., Colja Venturini, A., Montanič, S., & Čurin Šerbec, V. (2008). Antibody variable-region sequencing as a method for hybridoma cell-line authentication. Applied Microbiology and Biotechnology, 78, 1071–1078.

    Article  CAS  Google Scholar 

  26. Kosmač, M., Koren, S., Giachin, G., Stoilova, T., Gennaro, R., Legname, G., et al. (2011). Epitope mapping of a PrP(Sc)-specific monoclonal antibody: identification of a novel C-terminally truncated prion fragment. Molecular Immunology, 48, 746–750.

    Article  Google Scholar 

  27. Škrlj, N., Erčulj, N., & Dolinar, M. (2009). A versatile bacterial expression vector based on the synthetic biology plasmid pSB1. Protein Expression and Purification, 64, 198–204.

    Article  Google Scholar 

  28. Škrlj, N., Čurin Šerbec, V., & Dolinar, M. (2010). Single-chain Fv antibody fragments retain binding properties of the monoclonal antibody raised against peptide P1 of the human prion protein. Applied Biochemistry and Biotechnology, 160, 1808–1821.

    Article  Google Scholar 

  29. Škrlj, N., Vranac, T., Popović, M., Čurin Šerbec, V., & Dolinar, M. (2011). Specific binding of the pathogenic prion isoform: development and characterization of a humanized single-chain variable antibody fragment. PloS One, 6, e15783.

    Article  Google Scholar 

  30. Raag, R., & Whitlow, M. (1995). Single-chain Fvs. FASEB Journal, 9, 73–80.

    CAS  Google Scholar 

  31. Peter, J.-C., Lecourt, A.-C., Weckering, M., Zipfel, G., Niehoff, M. L., Banks, W. A., et al. (2010). A pharmacologically active monoclonal antibody against the human melanocortin-4 receptor: effectiveness after peripheral and central administration. Journal of Pharmacology and Experimental Therapeutics, 333, 478–490.

    Article  CAS  Google Scholar 

  32. Banks, W. A. (2008). Delivery of peptides to the brain: emphasis on therapeutic development. Biopolymers, 90, 589–594.

    Article  CAS  Google Scholar 

  33. Bertrand, J. R., Malvy, C., Auguste, T., Toth, G. K., Kiss-Ivankovits, O., Illyes, E., et al. (2009). Synthesis and studies on cell-penetrating peptides. Bioconjugate Chemistry, 20, 1307–1314.

    Google Scholar 

  34. Mäe, M., & Langel, U. (2006). Cell-penetrating peptides as vectors for peptide, protein and oligonucleotide delivery. Current Opinion in Pharmacology, 6, 509–514.

    Article  Google Scholar 

  35. Pouniotis, D. S., Esparon, S., Apostolopoulos, V., & Pietersz, G. A. (2011). Whole protein and defined CD8(+) and CD4(+) peptides linked to penetratin targets both MHC class I and II antigen presentation pathways. Immunology and Cell Biology, 89, 904–913.

    Article  CAS  Google Scholar 

  36. Avignolo, C., Bagnasco, L., Biasotti, B., Melchiori, A., Tomati, V., Bauer, I., et al. (2008). Internalization via Antennapedia protein transduction domain of an scFv antibody toward c-Myc protein. FASEB Journal, 22, 1237–1245.

    Article  CAS  Google Scholar 

  37. Epenetos, A., & Kousparou, C. (2010). Therapeutic Antennapedia-antibody molecules and methods of use thereof. US Patent Application 20100266592. London: Trojan Technologies.

    Google Scholar 

  38. Huang, Y., Rao, Y., Feng, C., Li, Y., Wu, X., Su, Z., et al. (2008). High-level expression and purification of Tat-haFGF19-154. Applied Microbiology and Biotechnology, 77, 1015–1022.

    Article  CAS  Google Scholar 

  39. Nitin, N., LaConte, L., Rhee, W. J., & Bao, G. (2009). Tat peptide is capable of importing large nanoparticles across nuclear membrane in digitonin permeabilized cells. Annals of Biomedical Engineering, 37, 2018–2027.

    Article  Google Scholar 

  40. Marfori, M., Mynott, A., Ellis, J. J., Mehdi, A. M., Saunders, N. F. W., Curmi, P. M., et al. (2011). Molecular basis for specificity of nuclear import and prediction of nuclear localization. Biochimica et Biophysica Acta, 1813, 1562–1577.

    Article  CAS  Google Scholar 

  41. Holliger, P., & Hudson, P. J. (2005). Engineered antibody fragments and the rise of single domains. Nature Biotechnology, 23, 1126–1136.

    Article  CAS  Google Scholar 

  42. Verma, R., Boleti, E., & George, A. J. (1998). Antibody engineering: comparison of bacterial, yeast, insect and mammalian expression systems. Journal of Immunological Methods, 216, 165–181.

    Article  CAS  Google Scholar 

  43. Korth, C., Stierli, B., Streit, P., Moser, M., Schaller, O., Fischer, R., et al. (1997). Prion (PrPSc)-specific epitope defined by a monoclonal antibody. Nature, 390, 74–77.

    Article  CAS  Google Scholar 

  44. Féraudet, C., Morel, N., Simon, S., Volland, H., Frobert, Y., Créminon, C., et al. (2005). Screening of 145 anti-PrP monoclonal antibodies for their capacity to inhibit PrPSc replication in infected cells. Journal of Biological Chemistry, 280, 11247–11258.

    Article  Google Scholar 

  45. Paramithiotis, E., Pinard, M., Lawton, T., LaBoissiere, S., Leathers, V. L., Zou, W.-Q., et al. (2003). A prion protein epitope selective for the pathologically misfolded conformation. Nature Medicine, 9, 893–899.

    Article  CAS  Google Scholar 

  46. Jones, M., Wight, D., McLoughlin, V., Norrby, K., Ironside, J. W., Connolly, J. G., et al. (2009). An antibody to the aggregated synthetic prion protein peptide (PrP106-126) selectively recognizes disease-associated prion protein (PrP) from human brain specimens. Brain Pathology, 19, 293–302.

    Article  CAS  Google Scholar 

  47. Horiuchi, M., Karino, A., Furuoka, H., Ishiguro, N., Kimura, K., & Shinagawa, M. (2009). Generation of monoclonal antibody that distinguishes PrPSc from PrPC and neutralizes prion infectivity. Virology, 394, 200–207.

    Article  CAS  Google Scholar 

  48. Ludewigs, H., Zuber, C., Vana, K., Nikles, D., Zerr, I., & Weiss, S. (2007). Therapeutic approaches for prion disorders. Expert Review of Anti-infective Therapy, 5, 613–630.

    Article  CAS  Google Scholar 

  49. Ahmad, Z.A., Yeap, S.K., Ali, A.M., Ho, W.Y., Alitheen, N.B.M., Hamid, M. (2012). scFv antibody: principles and clinical application. Clinical & Developmental Immunology, 2012, 980250.

Download references

Acknowledgments

This work was supported by the Slovenian Research Agency Ph.D. grant for N. Škrlj.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Dolinar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Škrlj, N., Drevenšek, G., Hudoklin, S. et al. Recombinant Single-Chain Antibody with the Trojan Peptide Penetratin Positioned in the Linker Region Enables Cargo Transfer Across the Blood–Brain Barrier. Appl Biochem Biotechnol 169, 159–169 (2013). https://doi.org/10.1007/s12010-012-9962-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9962-7

Keywords

Navigation