Skip to main content
Log in

Isolation and Biomass Production of a Saccharomyces cerevisiae Strain Binding Copper and Zinc Ions

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Copper and zinc are essential trace elements participating in many physiological functions, notably immunity and protection against oxidative stress. Yeasts and the yeast Saccharomyces cerevisiae, in particular, possess in their genome tandem repeats of the CUP1 gene coding for a protein (a metallothionein) capable of capturing and binding toxic elements such as copper ions. The number of copies of this gene in a cell determines its physiological level of resistance to these ions. This paper describes the selection, characterization, and production of a new copper-resistant yeast strain that can bind large quantities of copper and zinc. This approach should lead to increasing the bioavailability of these trace elements and hence to reducing their emission into the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gournier-Château, N. (1994). in Les probiotiques en alimentation animale (pp. 69–85). Paris: Lavoisier Tec/Doc.

  2. Fooks, L. J., Fuller, R., & Gibson, G. R. (1999). International Dairy Journal, 9, 53–61.

    Article  Google Scholar 

  3. Tannock, G. (1999). Probiotics: A critical review. UK: Horizon.

    Google Scholar 

  4. Lourens-Hattingh, A., & Viljoen, B. C. (2001). Food Research International, 34, 791–796.

    Article  CAS  Google Scholar 

  5. Madsen, K., Cornish, A., Soper, P., McKaigney, C., Jijon, H., Yachimec, C., et al. (2001). Gastroenterology, 121(3), 580–591.

    Article  CAS  Google Scholar 

  6. Kornegay, E. T., Rhein-Welker, D., Lindemann, M. D., & Wood, C. M. (1995). Journal of Animal Science, 73, 1381–1389.

    CAS  Google Scholar 

  7. Matsui, T., Nakagawa, Y., Tamura, A., Watanabe, C., Fujita, K., Nakajima, T., et al. (2000). Journal of Animal Science, 78, 94–99.

    CAS  Google Scholar 

  8. Van Heugten, E., Spears, J. W., Kegley, E. B., Ward, J. D., & Qureshi, M. A. (2003). Journal of Animal Science, 81, 2063–2071.

    Google Scholar 

  9. Van Heugten, E., Funderburke, D. W., & Dorton, K. L. (2003). Journal of Animal Science, 81, 1004–1012.

    Google Scholar 

  10. White, L. A., Newman, M. C., Cromwell, G. L., & Lindermann, M. D. (2002). Journal of Animal Science, 80, 2619–2628.

    CAS  Google Scholar 

  11. Fogel, S., & Welch, J. W. (1982). Proceedings of the National Academy of Sciences of the United States of America, 79, 5342–5346.

    Article  CAS  Google Scholar 

  12. Karin, M., Najarian, R., Haslinger, A., Valenzuela, P., Welch, J., & Fogel, S. (1984). Proceedings of the National Academy of Sciences of the United States of America, 81, 337–341.

    Article  CAS  Google Scholar 

  13. Fogel, S., Welch, J., Cathala, G., & Karin, M. (1983). Current Genetics, 7, 347–355.

    Article  CAS  Google Scholar 

  14. Thiele, D. (1988). Molecular Cell Biology, 8, 2745–2752.

    CAS  Google Scholar 

  15. Thorvaldsen, J. L., Sewell, A. K., McCowen, C. L., & Winge, D. R. (1993). Journal of Biological Chemistry, 268(17), 12512–12518.

    CAS  Google Scholar 

  16. Pena, M. M. O., Koch, K. A., & Thiele, D. J. (1998). Molecular Cell Biology, 18, 2514–2523.

    CAS  Google Scholar 

  17. Pagani, A., Villarreal, L., Capdevila, M., & Atrian, S. (2007). Molecular Microbiology, 63(1), 256–69.

    Article  CAS  Google Scholar 

  18. Révy, P. S., Jondreville, C., Dourmad, J. Y., & Nys, Y. (2003). INRA Prod Anim, 16(1), 3–18.

    Google Scholar 

  19. Johnston, J. R. (Ed) (1994). Pulsed field gel electrophoresis in Molecular Genetics of yeast—A practical approach. Oxford: IRL Press, Oxford University.

  20. Friel, D., Vandenbol, M., & Jijakli, H. (2005). Journal of Applied Microbiology, 98, 783–788.

    Article  CAS  Google Scholar 

  21. Ausubel, F. M., Brent, R., Kingston, R., Moore, D. D., Seidman, J. G., Smith, J. A., et al. (1995). Short protocols in molecular biology. New York: Wiley.

  22. Sambrook, J., Fritsch, E. F., & Maniatis, T. (2001). A laboratory manual (3rd ed.). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  23. Vandenbol, M., Jauniaux, J. C., Vissers, S., & Grenson, M. (1987). European Journal of Biochemistry, 164(3), 607–612.

    Article  CAS  Google Scholar 

  24. Kreger-van Rij, N. J. W. (1987). The yeasts: A taxonomic study (3rd ed.). Amsterdam: Elsevier.

    Google Scholar 

  25. Wenzel, T. J., Teunissen, A. W., & de Steensma, H. Y. (1995). Nucleic Acids Research, 23(5), 883–4.

    Article  CAS  Google Scholar 

  26. Pan, Y., & Loo, G. (2000). Free Radical Biology & Medicine, 28(5), 824–830.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the “Ministère belge de la Région Wallonne” (contract RW-DGA-31–1111). We wish to thank Anne-Lise Boulvin for providing technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurore Stroobants.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stroobants, A., Delroisse, JM., Delvigne, F. et al. Isolation and Biomass Production of a Saccharomyces cerevisiae Strain Binding Copper and Zinc Ions. Appl Biochem Biotechnol 157, 85–97 (2009). https://doi.org/10.1007/s12010-008-8253-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8253-9

Keywords

Navigation