Skip to main content
Log in

An integrated approach towards the study of scratch damage of polymer

  • Published:
JCT Research Aims and scope Submit manuscript

Abstract

To seek a better understanding of the scratch damage of polymers, an integrated analysis approach is proposed in this article. This integrated approach essentially involves (a) the use of a new scratch test device for testing, (b) employing microscopy techniques and image an analysis tool, VIEEW®, for studying material damage and scratch visibility, and finally (c) performing finite element (FE) modeling to examine the mechanical response of the polymeric substrate involved during the scratch process. Applying this approach to five model material systems and employing linearly increasing load tests, the findings of the fundamental material science study of the scratch damage of these materials are presented. From the three-dimensional FE analysis, the numerical results generated were able to reasonably predict the scratch damage and provide corresponding mechanistic interpretation. The essential link between material science and mechanics outlines the uniqueness of this approach for studying the scratch damage of polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Williams, J.A., “Analytical Models of Scratch Hardness,” Tribol. Int., 29(8), 675–694 (1996).

    Article  CAS  Google Scholar 

  2. Briscoe, B.J., Delfino, A., and Pelillo, E., “Single-Pass Pendulum Scratching of Poly(styrene) and Poly(methylmethacrylate),” Wear, 225–229(1), 319–328 (1999).

    Article  Google Scholar 

  3. Vingsbo, O. and Hogmark, S., “Single-Pass Pendulum Grooving—A Technique for Abrasive Testing,” Wear, 100, 489–502 (1984).

    Article  Google Scholar 

  4. Liang, Y.N., Li, S.Z., Li, D.F., and Li, S., “Some Developments for Single-Pass Pendulum Scratching,” Wear, 199, 66–73 (1996).

    Article  CAS  Google Scholar 

  5. Xiang, C., Sue, H.-J., Chu, J., and Coleman, B., “Scratch Behaviour and Material Property Relationship in Polymers,” J. Polym. Sci., Polym. Phys. Ed., 39, 47–59 (2001).

    Article  CAS  Google Scholar 

  6. Briscoe, B.J., Pelillo, E., and Sinha, S.K., “Characterisation of the Scratch Deformation Mechanisms for Poly(methylmethacrylate) Using Surface Optical Reflectivity,” Polym. Int., 43(4), 359–367 (1997).

    Article  CAS  Google Scholar 

  7. Kody, R.S. and Martin, D.C., “Quantitative Characterization of Surface Deformation in Polymer Composites Using Digital Image Analysis,” Polym. Eng. Sci., 36(2), 298–304 (1996).

    Article  CAS  Google Scholar 

  8. Grasmeder, J.R., “Scratch-Resistant Polypropylene Compounds,” Institute of Polymer, Polypropylene, the International Conference, 98–108 (1994).

  9. Wang, P.Z., Hutchings, I.M., Duncan, S.J., and Jenkins, L., “Quantitative Characterization of Scratch Damage in Polypropylene (PTO) for Automotive Interior Applications,” SAE Transactions, 1999-01-0243, 134–150 (1999).

  10. Rangarajan, P., Sinha, M., Watkins, V., and Harding, K., “Scratch Visibility of Polymers Measured Using Optical Imaging,” Polym. Eng. Sci., 43, 749 (2003).

    Article  CAS  Google Scholar 

  11. Atkins, A.G. and Mai, Y-M., in “Elastic and Plastic Fracture—Metals, Polymers, Ceramics, Composites, Biological Materials,” Ellis Horwood Ltd., Chichester, p. 758, 1985.

    Google Scholar 

  12. Guevin, P.R.J., “State-of-the-Art Instruments to Measure Coating Hardness,” Journal of Coatings Technology, 67, No. 840, 61 (1995).

    CAS  Google Scholar 

  13. Triplett, T., “Two-Component: The Magic's in the Mix,” Ind. Paint Powder, 72(4), 34–37 (1996).

    Google Scholar 

  14. Briscoe, B.J., Evans, P.D., Pelillo, E., and Sinha, S.K., “Scratching Maps for Polymers,” Wear, 200, 137–147 (1996).

    Article  CAS  Google Scholar 

  15. Briscoe, B.J., Pelillo, E., and Sinha, S.K., “Scratch Hardness and Deformation Maps for Polycarbonate and Polyethylene,” Polym. Eng. Sci., 36(24), 2996–3005 (1996).

    Article  Google Scholar 

  16. Briscoe, B.J., Pelillo, E., Ragazzi, F., and Sinha, S.K., “Scratch Deformation of Methanol Plasticized Poly(methylmethacrylate) Surfaces,” Polymer, 39(11), 2161–2168 (1998).

    Article  CAS  Google Scholar 

  17. Stuart, B.H. and Briscoe, B.J., “Scratch Hardness Studies of Poly(ether ether ketone),” Polymer, 37(17), 3819–3824 (1996).

    Article  CAS  Google Scholar 

  18. Chanda, A., Basu, D., Dasgupta, A., Chattopadhyay, S., and Mukhopadhyay, A.K., “A New Parameter for Measuring Wear of Materials,” J. Mater. Sci. Lett., 16, 1647–1651 (1997).

    Article  CAS  Google Scholar 

  19. Chu, J., Rumao, L., and Coleman, B., “Scratch and Mar Resistance of Filled Polypropylene Materials,” Polym. Eng. Sci., 38(11), 1906–1914 (1998).

    Article  CAS  Google Scholar 

  20. Chu, J., Xiang, C., Sue, H.-J., and Hollis, R.D., “Scratch Resistance of Mineral-Filled Polypropylene Materials,” Polym. Eng. Sci., 40(4), 944–955 (2000).

    Article  CAS  Google Scholar 

  21. Chu, J., “Scratch resistance of PP composites,” 43rd International SAMPE Symposium, 1149–1157, 1998.

  22. Lamy, B., “Effect of Brittleness Index and Sliding Speed on the Morphology of Surface Scratching in Abrasive or Erosive Processes,” Tribol. Int., 17(1), 35–38 (1984).

    Article  Google Scholar 

  23. Gauthier, G. and Schirrer, R., “Time and Temperature Dependence of the Scratch Properties of Poly(methylmethacrylate) Surfaces,” J. Mater. Sci., 35, 2121–2130 (2000).

    Article  CAS  Google Scholar 

  24. Krupicka, A., Johansson, M. and Hult, A., “Use and Interpretation of Scratch Tests on Ductile Polymer Coatings,” Prog. Org. Coat., 46, 32–48 (2003).

    Article  CAS  Google Scholar 

  25. Ramsteiner, F., Jaworek, T., Weber, M., and Forster, S., “Scratch Resistance and Embrittlement of Coated Polymers,” Polym. Test., 22, 439–451 (2003).

    Article  CAS  Google Scholar 

  26. Ni, B.Y. and Faou, A.L., “Scratching Behaviour of Polymer Films Using Blunt Spherical Styli,” J. Mater. Sci., 31, 3955–3963 (1996).

    Article  CAS  Google Scholar 

  27. Jardret, V., Zahouani, H., Loubet, J.L., and Mathia, T.G., “Understanding and Quantification of Elastic and Plastic Deformation During a Scratch Test,” Wear 218, 8–14 (1998).

    Article  CAS  Google Scholar 

  28. Kim, S.R., Song, J.S., Choi, Y.J., and Kim, J.H., “Preparation of Hard Coatings on Polycarbonate Substrate by High Frequency Ion Beam Deposition Using CH4/H2 Gases,” Mater. Res. Soc. Symp. Proc., 504, 265–270 (1997).

    Google Scholar 

  29. Lin, L., Blackman, G.S., and Matheson, B.R., “Micro-Mechanical Characterization of Mar Behavior of Automotive Topcoats: Micro- and Nano- Wear of Polymeric Materials,” American Chemical Society, Polymer Preprints, Division of Polymer Chemistry 39(2), 1224–1225 (1998).

    CAS  Google Scholar 

  30. Yang, A.C.-M. and Wu, T.W., “Abrasive Wear and Craze Breakdown in Polystyrene,” J. Mater. Sci., 28, 955–962 (1993).

    Article  CAS  Google Scholar 

  31. Leroux, P., Raveh, A., Klemberg-Sapieha, J.E., and Martinu, L., “Mechanical Properties of Plasma Deposited Functional Coatings Determined by Microscratch Measurements,” Proc. of the Annual Technical Conference—Society of Vacuum Coaters, 472–477, 1993.

  32. Du, B.Y., Vanlandingham, M.R., Zhang, Q.L., and He, T.B., “Direct Measurement of Plowing Friction and Wear of a Polymer Thin Film Using the Atomic Force Microscope,” J. Mater. Res., 16(5), 1487–1492 (2001).

    Article  CAS  Google Scholar 

  33. Hamada, E. and Kaneko, R., “Micro-Tribological Evaluations of a Polymer Surface by Atomic Force Microscopes,” Ultramicroscopy, 42-44, Part A, 184–190 (1992).

    Article  CAS  Google Scholar 

  34. Han, Y.C., Schmitt, S., and Friedrich, K., “Nanoscale Indentation and Scratch of Short Carbon Fiber Reinforced PEEK/PTFE Composite Blend by Atomic Force Microscope Lithography,” Appl. Compos. Mater., 6(1), 1–18 (1999).

    Article  CAS  Google Scholar 

  35. Bertrand-Lambotte, P., Loubet, J.L., Verpy C., and Pavan, S., “Understanding of Automotive Clearcoats Scratch Resistance,” Thin Solid Film, 420–421, 281–286 (2002).

    Article  Google Scholar 

  36. Li, T., Chen, Q., Schadler, L.S., Siegel, R.W., Mendel, J., and Irvin, G.C. Jr., “Scratch Behavior of Nanoparticle Al2O3-Filled Gelatin Films,” Polym. Composite, 23 (6), 1076–1086 (2002).

    Article  CAS  Google Scholar 

  37. Khurshudov, A.G. and Kato, K., “Volume Increase Phenomena in Reciprocal Scratching of Polycarbonate Studied by Atomic Force Microscopy,” J. Vac. Sci. Technol., B 13(5), 1938–1944 (1995).

    Article  CAS  Google Scholar 

  38. Blackman, G.S., Lin, L., and Matheson, R.R., “Micro-and Nano-Wear of Polymeric Materials,” American Chemical Society, Polymer Preprints, Division of Polymer Chemistry 39, 1218–1219 (1998).

    CAS  Google Scholar 

  39. Briscoe, B.J., Evans, P.D., Biswas, S.K., and Sinha, S.K., “Hardnesses of Poly(methylmethacrylate),” Tribol. Intern., 29, 93–104 (1996).

    Article  CAS  Google Scholar 

  40. Zhitomirsky, V.N., Grimberg, I., Joseph, M.C., Boxman, R.L., Weiss, B.Z., Matthews, A., and Goldsmith, S., “Vacuum Arc Deposition of Metal/Ceramic Coatings on Polymer Substrates,” Surf. Coat. Technol., 108–109, 160–165 (1998).

    Article  Google Scholar 

  41. Nguyen, T.P., Amgaad, K., Cailler, M., and Tran, V.H., “Improved Adhesion of Aluminum Layers Deposited on Plasma and Thermally Treated Poly(paraphenylene-vinylene) Films Substrates,” J. Adhes. Sci. Technol., 8, 821–831 (1994).

    CAS  Google Scholar 

  42. Jardret, V.D. and Oliver, W.C., “Viscoelastic Behavior of Polymer Films During Scratch Test: A Quantitative Analysis,” Mater. Res. Soc. Symp. Proc., 594, 251–256 (2000).

    CAS  Google Scholar 

  43. Belin, M. and Martin, J.M., “Triboscopy, a New Approach to Surface Degradations of Thin Films,” Wear, 156(1), 151–160 (1992).

    Article  CAS  Google Scholar 

  44. Kotaki, M., Wong, M., Xiang, C., and Sue, H.-J., “Scratch Behavior of Polypropylene-Based Blends,” ANTEC 2002, 2, 1535–1539 (2002).

    Google Scholar 

  45. Lim, G.T., Wong, M., Moyse, A., Reddy, J.N., and Sue, H.-J., “Mechanical Modeling and Experimental Observation of Surface Damage Phenomena of Polymers,” SPE International Conference on Polyolefins, 577–584 (2003).

  46. Wong, M., Lim, G.T., Moyse, A., Reddy, J.N., and Sue, H.-J., “A New Test Methodology for Evaluating Scratch Resistance of Polymers,” Wear, 256, 1214–1227 (2004).

    Article  CAS  Google Scholar 

  47. Lim, G.T., Reddy, J.N., and Sue, H.-J., Finite Element Modeling for Scratch Damage of Polymers, ACS Book Series, in press.

  48. Reddy, J.N., An Introduction to the Finite Element Method, 2nd Ed. McGraw-Hill, New York, 1993.

    Google Scholar 

  49. Kita, H., Ishiki, M., Maki, M., Kitamura, T., and Kuriyama, T., “Scratch Behaviors of Moldings,” ANTEC 2003, 3, 2992–2996 (2003).

    Google Scholar 

  50. D 618-00, Annual Book of ASTM Standards, 8.01, p. 35, 2003.

  51. ABAQUS®, Inc., ABAQUS®/Explicit User's Manual, Version 6.3, 1–2, 2002.

  52. ABAQUS®, Inc., ABAQUS®/Standard User's Manual, Version 6.3, 1–3, 2002.

  53. Arruda, E.M., Azhi, S., Li, Y., and Ganesan, A., “Rate Dependent Deformation of Semi-Crystalline Polypropylene Near Room Temperature,” J. Eng. Mater. Technol., Transactions of the ASME, 119, 216–222 (1997).

    CAS  Google Scholar 

  54. Bowden, P.B. and Oxborough, R.J., “A General Critical Strain Criterion for Crazing in Amorphous Glassy Polymers,” Philos. Mag., 28, 547–559 (1973).

    Article  Google Scholar 

  55. Wong, M., Moyse, A., Lee, F., and Sue, H.-J., “Study of Surface Damage in Polypropylene Under Progressive Loading,” J. Mater. Sci., 39, 3293–3308 (2004).

    Article  CAS  Google Scholar 

  56. Hamilton, G.M., “Explicit Equations for the Stresses Beneath a Sliding Spherical Contact,” P. I. Mech. Eng. C—J. Mec., 197, pp. 53–59 (1983) [Errata on the paper are documented on page 282 of the same journal volume].

    Article  Google Scholar 

  57. Blees, M.H., Winkelman, G.B., Balkenende, A.R., and den Toonder, J.M.J., “The Effect of Friction on Scratch Adhesion Testing: Application to a Sol-Gel Coating on Polypropylene,” Thin Solid Films, 359, 1–13 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Sue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, G.T., Wong, M.H., Reddy, J.N. et al. An integrated approach towards the study of scratch damage of polymer. J Coat. Technol. Res. 2, 361–369 (2005). https://doi.org/10.1007/s11998-005-0004-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-005-0004-z

Keywords

Navigation