Skip to main content

Advertisement

Log in

Diagnosis and treatment of neurotransmitter disorders

  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

The neurotransmitter disorders represent an enigmatic and enlarging group of neurometabolic conditions caused by abnormal neurotransmitter metabolism or transport. A high index of clinical suspicion is important, given the availability of therapeutic strategies. This article covers disorders of monoamine (catecholamine and serotonin) synthesis, glycine catabolism, pyridoxine dependency, and ã -aminobutyric acid (GABA) metabolism. The technological aspects of appropriate cerebrospinal fluid (CSF) collection, shipment, study, and interpretation merit special consideration. Diagnosis of disorders of monoamines requires analysis of CSF homovanillic acid, 5-hydroxyindoleacetic acid, ortho-methyldopa, BH4, and neopterin. The delineation of new disorders with important therapeutic implications, such as cerebral folate deficiency and PNPO deficiency, serves to highlight the value of measuring CSF neurotransmitter precursors and metabolites. The impressive responsiveness of Segawa fluctuating dystonia to levodopa is a hallmark feature of previously unrecognized neurologic morbidity becoming treatable at any age. Aromatic amino acid decarboxylase and tyrosine hydroxylase deficiency have more severe phenotypes and show variable responsiveness to levodopa. Glycine encephalopathy usually has a poor outcome; benzoate therapy may be helpful in less affected cases. Pyridoxine-dependent seizures are a refractory but treatable group of neonatal and infantile seizures; rare cases require pyridoxal-5-phosphate. Succinic semialdehyde dehydrogenase deficiency is relatively common in comparison to the remainder of this group of disorders. Treatment directed at the metabolic defect with vigabatrin has been disappointing, and multiple therapies are targeted toward specific but protean symptoms. Other disorders of GABA metabolism, as is true of the wide spectrum of neurotransmitter disorders, will require increasing use of CSF analysis for diagnosis, and ultimately, treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Hyland K: The lumbar puncture for diagnosis of pediatric neurotransmitter diseases. Ann Neurol 2003, 54(Suppl 6):S13-S17. Overview of CSF neurotransmitter studies from the only laboratory currently offering clinical testing in the United States.

    Article  PubMed  CAS  Google Scholar 

  2. Nemeth AH: The genetics of primary dystonias and related disorders. Brain 2002, 125:695–721.

    Article  PubMed  Google Scholar 

  3. Tassin J, Durr A, Bonnet AM, et al.: Levodopa-responsive dystonia. GTP cyclohydrolase I or parkin mutations? Brain 2000, 123:1112–1121.

    Article  PubMed  Google Scholar 

  4. Swoboda KJ, Saul JP, McKenna CE, et al.: Aromatic L-amino acid decarboxylase deficiency: overview of clinical features and outcomes. Ann Neurol 2003, 54(Suppl 6):S49-S55.

    Article  PubMed  CAS  Google Scholar 

  5. Kure S, Narisawa K, Tada K: Enzymatic diagnosis of nonketotic hyperglycinemia with lymphoblasts. J Pediatr 1992, 120:95–98.

    Article  PubMed  CAS  Google Scholar 

  6. Baxter P: Pyridoxine-dependent seizures: a clinical and biochemical conundrum. Biochim Biophys Acta 2003, 1647:36–41.

    PubMed  CAS  Google Scholar 

  7. Battaglioli G, Rosen DR, Gospe SM Jr, et al.: Glutamate decarboxylase is not genetically linked to pyridoxinedependent seizures. Neurology 2000, 55:309–311.

    PubMed  CAS  Google Scholar 

  8. Cormier-Daire V, Dagoneau N, Nabbout R, et al.: A gene for pyridoxine-dependent epilepsy maps to chromosome 5q31. Am J Hum Genet 2000, 67:991–993.

    Article  PubMed  CAS  Google Scholar 

  9. Bennett CL, Huynh HM, Chance PF, et al.: Genetic heterogeneity for autosomal recessive pyridoxine-dependent seizures. Neurogenetics 2005, 6:143–149.

    Article  PubMed  CAS  Google Scholar 

  10. Plecko B, Stockler-Ipsiroglu S, Paschke E, et al.: Pipecolic acid elevation in plasma and cerebrospinal fluid of two patients with pyridoxine-dependent epilepsy. Ann Neurol 2000, 48:121–125.

    Article  PubMed  CAS  Google Scholar 

  11. Mills PB, Struys E, Jakobs C, et al.: Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nat Med 2006, 12:307–309.

    Article  PubMed  CAS  Google Scholar 

  12. Mills PB, Surtees RA, Champion MP, et al.: Neonatal epileptic encephalopathy caused by mutations in the PNPO gene encoding pyridox(am)ine 5′-phosphate oxidase. Hum Mol Genet 2005, 14:1077–1086.

    Article  PubMed  CAS  Google Scholar 

  13. Pearl PL, Capp PK, Novotny EJ, et al.: Inherited disorders of neurotransmitters in children and adults. Clin Biochem 2005, 38:1051–1058.

    Article  PubMed  CAS  Google Scholar 

  14. Pearl P, Acosta MT, Wallis DD, et al.: Dyskinetic features of succinate semialdehyde dehydrogenase deficiency, a GABA degradative defect. In Paediatric Movement Disorders. Edited by Fernandez-Alvarez E, Arzimanoglou A, Tolosa E. Montrouge, France: John Libbey Eurotext Ltd.; 2005:203–212.

    Google Scholar 

  15. Akaboshi S, Hogema BM, Novelletto A, et al.: Mutational spectrum of the succinate semialdehyde dehydrogenase (ALDH5A1) gene and functional analysis of 27 novel disease-causing mutations in patients with SSADH deficiency. Hum Mutat 2003, 22:442–450.

    Article  PubMed  CAS  Google Scholar 

  16. Bandmann O, Wood NW: Dopa-responsive dystonia--the story so far. Neuropediatrics 2002, 33:1–5.

    Article  PubMed  CAS  Google Scholar 

  17. Segawa M, Nomura Y, Nishiyama N: Autosomal dominant guanosine triphosphate cyclohydrolase I deficiency (Segawa disease). Ann Neurol 2003, 54(Suppl 6):S32-S45. This report is contained in a special monograph of the proceedings of a National Institutes of Health/PNDA-sponsored meeting on the pediatric neurotransmitter disorders held May 2002 in Bethesda, MD.

    Article  PubMed  CAS  Google Scholar 

  18. Hwang WJ, Calne DB, Tsui JK, et al.: The long-term response to levodopa in dopa-responsive dystonia. Parkinsonism Relat Disord 2001, 8:1–5.

    Article  PubMed  CAS  Google Scholar 

  19. Jarman PR, Bandmann O, Marsden CD, et al.: GTP cyclohydrolase I mutations in patients with dystonia responsive to anticholinergic drugs. J Neurol Neurosurg Psychiatry 1997, 63:304–308.

    Article  PubMed  CAS  Google Scholar 

  20. Swoboda KJ, Hyland K: Diagnosis and treatment of neurotransmitter-related disorders. Neurol Clin 2002, 20:1143–1161, viii.

    Article  PubMed  Google Scholar 

  21. Chang YT, Sharma R, Marsh JL, et al.: Levodopa-responsive aromatic L-amino acid decarboxylase deficiency. Ann Neurol 2004, 55:435–438.

    Article  PubMed  CAS  Google Scholar 

  22. Pons R, Ford B, Chiriboga CA, et al.: Aromatic L-amino acid decarboxylase deficiency: clinical features, treatment, and prognosis. Neurology 2004, 62:1058–1065.

    PubMed  CAS  Google Scholar 

  23. Fiumara A, Brautigam C, Hyland K, et al.: Aromatic L-amino acid decarboxylase deficiency with hyperdopaminuria. Clinical and laboratory findings in response to different therapies. Neuropediatrics 2002, 33:203–208.

    Article  PubMed  CAS  Google Scholar 

  24. Grattan-Smith PJ, Wevers RA, Steenbergen-Spanjers GC, et al.: Tyrosine hydroxylase deficiency: clinical manifestations of catecholamine insufficiency in infancy. Mov Disord 2002, 17:354–359.

    Article  PubMed  Google Scholar 

  25. Dionisi-Vici C, Hoffmann GF, Leuzzi V, et al.: Tyrosine hydroxylase deficiency with severe clinical course: clinical and biochemical investigations and optimization of therapy. J Pediatr 2000, 136:560–562.

    Article  PubMed  CAS  Google Scholar 

  26. Dinopoulos A, Kure S, Chuck G, et al.: Glycine decarboxylase mutations: a distinctive phenotype of nonketotic hyperglycinemia in adults. Neurology 2005, 64:1255–1257.

    PubMed  CAS  Google Scholar 

  27. Chien YH, Hsu CC, Huang A, et al.: Poor outcome for neonatal-type nonketotic hyperglycinemia treated with high-dose sodium benzoate and dextromethorphan. J Child Neurol 2004, 19:39–42.

    PubMed  Google Scholar 

  28. Korman SH, Boneh A, Ichinohe A, et al.: Persistent NKH with transient or absent symptoms and a homozygous GLDC mutation. Ann Neurol 2004, 56:139–143.

    Article  PubMed  CAS  Google Scholar 

  29. Tekgul H, Serdaroglu G, Karapinar B, et al.: Vigabatrin caused rapidly progressive deterioration in two cases with early myoclonic encephalopathy associated with nonketotic hyperglycinemia. J Child Neurol 2006, 21:82–84.

    PubMed  Google Scholar 

  30. Grillo E, da Silva RJ, Barbato JH Jr: Pyridoxine-dependent seizures responding to extremely low-dose pyridoxine. Dev Med Child Neurol 2001, 43:413–415.

    Article  PubMed  CAS  Google Scholar 

  31. Baxter P: Pyridoxine or pyridoxal phosphate for intractable seizures? Arch Dis Child 2005, 90:441–442. Recommended editorial detailing the pyridoxine versus P5P debate from a recognized expert in pyridoxinedependent epilepsy.

    Article  PubMed  CAS  Google Scholar 

  32. Wang HS, Kuo MF, Chou ML, et al.: Pyridoxal phosphate is better than pyridoxine for controlling idiopathic intractable epilepsy. Arch Dis Child 2005, 90:512–525.

    Article  PubMed  Google Scholar 

  33. Pearl PL, Gibson KM, Acosta MT, et al.: Clinical spectrum of succinic semialdehyde dehydrogenase deficiency. Neurology 2003, 60:1413–1417. Report of the clinical phenotype of the most common neurotransmitter disorder.

    PubMed  CAS  Google Scholar 

  34. Ergezinger K, Jeschke R, Frauendienst-Egger G, et al.: Monitoring of 4-hydroxybutyric acid levels in body fluids during vigabatrin treatment in succinic semialdehyde dehydrogenase deficiency. Ann Neurol 2003, 54:686–689.

    Article  PubMed  CAS  Google Scholar 

  35. Pearl PL, Gropman A: Monitoring gamma-hydroxybutyric acid levels in succinate-semialdehyde dehydrogenase deficiency. Ann Neurol 2004, 55:599; author reply 599.

    Article  PubMed  Google Scholar 

  36. Gropman A: Vigabatrin and newer interventions in succinic semialdehyde dehydrogenase deficiency. Ann Neurol 2003, 54(Suppl 6):S66-S72. Emphasis on treatment options in SSADH deficiency.

    Article  PubMed  CAS  Google Scholar 

  37. Hogema BM, Gupta M, Senephansiri H, et al.: Pharmacologic rescue of lethal seizures in mice deficient in succinate semialdehyde dehydrogenase. Nat Genet 2001, 29:212–216.

    Article  PubMed  CAS  Google Scholar 

  38. Gupta M, Hogema BM, Grompe M, et al.: Murine succinate semialdehyde dehydrogenase deficiency. Ann Neurol 2003, 54(Suppl 6):S81-S90. Comprehensive report on murine SSADH, serving as a prototype of genetic degradative technology to develop animal models for further research.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearl, P.L., Hartka, T.R. & Taylor, J. Diagnosis and treatment of neurotransmitter disorders. Curr Treat Options Neurol 8, 441–450 (2006). https://doi.org/10.1007/s11940-006-0033-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11940-006-0033-7

Keywords

Navigation