Skip to main content

Advertisement

Log in

Hypercholesterolemia and Dyslipidemia: Issues for the clinician

  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

The current state of the art in the diagnosis and treatment of lipoprotein disorders has progressed beyond the standard “lipid profile,” which includes total low-density lipoprotein (LDL), and high-density lipoprotein (HDL) cholesterol, along with fasting triglycerides. Incorporating aspects of the atherogenic lipoprotein profile (ALP) (ALP and LDL subclass distribution), HDL subclass distribution, apolipoprotein E isoforms, lipoprotein (a), homocysteine, and high-sensitivity C-reactive protein provides the clinician with the tools to create a more detailed, accurate, and personalized diagnosis of disorders contributing to coronary artery disease in their patients. Sophisticated laboratory tests are available to clinicians through technology transfer programs as exemplified by the Lawrence Berkeley National Laboratory/Berkeley HeartLab, Berkeley, CA, collaboration and allow clinicians access to research quality laboratory tools. This has significant clinical relevance because the presence of these disorders guides treatment that is specific to the disorder(s). Appropriate treatment has been shown to have significantly greater clinical benefit in patient subgroups exhibiting the disorder the therapy is most likely to correct. A single drug or lifestyle therapy plan is no longer appropriate for all patients. The treatment must match the individual disorder(s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Superko HR: Inherited disorders in the lipoprotein system. A common cause of premature heart disease.In Women and Heart Disease. Edited by Julian DG, Wenger NK. London: Martin Dunitz; 1997:49–67.

    Google Scholar 

  2. Goldbourt U, de Faire U, Berg K: Genetic Factors in Coronary Heart Disease. Hingham, MA: Kluwer Academic Publishers; 1994.

    Google Scholar 

  3. Gabay C, Kushner I: Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 1999, 340:448–454.

    Article  PubMed  CAS  Google Scholar 

  4. Superko HR: What can we learn about dense LDL and lipoprotein particles from clinical trials? Curr Opin Lipidol 1996, 7:363–368.

    Article  PubMed  CAS  Google Scholar 

  5. Margolis JR, Brown CL, Picardi K, Superko HR: Elevated LDL-IVb predicts multiple invasive cardiac procedures [abstract]. Circulation 2002, in press.

  6. Manninen V, Elo O, Frick H, et al.: Lipid alterations and decline in the incidence of coronary heart disease in the Helsinki Heart Study. JAMA 1988, 260:641–651.

    Article  PubMed  CAS  Google Scholar 

  7. Manninen V, Tenkanen L, Koskinen P, et al.: Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the Helsinki Heart Study. Circulation 1992, 85:37–45.

    PubMed  CAS  Google Scholar 

  8. Superko HR: Beyond LDL-C reduction. Circulation 1996, 94:2351–2354.

    PubMed  CAS  Google Scholar 

  9. Zambon A, Brown BG, Deeb SS, Brunzell JD: Hepatic lipase as a focal point for the development and treatment of coronary artery disease. J Invest Med 2001, 49:112–118. The link between hepatic lipase, small LDL, and arteriographic change in coronary arteries is a recent advance in the understanding of atherosclerosis. The current state of understanding is nicely explained in this article.

    CAS  Google Scholar 

  10. Deckelaum RJ, Olivecrona T, Eisenberg S: Plasma lipoproteins in hyperlipidemia: roles of neutral lipid exchange and lipase. In Treatment of Hyperlipoproteinemia.Edited by Carlson LA, Olsson AG. New York: Raven Press; 1984:85–93.

    Google Scholar 

  11. Grundy SM: Hyperlipoproteinemia: metabolic basis and rationale for therapy. Am J Cardiol 1984, 54:20C-26C.

    Article  PubMed  CAS  Google Scholar 

  12. Miller NE: Associations of high-density lipoprotein subclasses and apolipoproteins with ischemic heart disease and coronary atherosclerosis. Am Heart J 1987, 113:589–597.

    Article  PubMed  CAS  Google Scholar 

  13. Superko HR, Enas EA, Kotha P, et al.: Impaired reverse cholesterol transport in Asian Indians. J Am Coll Cardiol 2001, 37:300A.

    Google Scholar 

  14. Brown GB, Zhao XQ, Chait A, et al.: Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N Engl J Med 2001, 345:1583–1592. This recent arteriographic study reveals the importance of change in Lp(AI) and HDL2 in regard to coronary arteriographic change with combination lipid therapy.

    Article  PubMed  CAS  Google Scholar 

  15. Krauss RM, Blanche PJ: Detection and quantitation of LDL subfractions. Curr Opin Lipidol 1992, 3:377–383.

    Article  CAS  Google Scholar 

  16. Gofman JW, Young W, Tandy R: Ischemic heart disease, atherosclerosis and longevity. Circulation 1966, 34:679–697.

    PubMed  CAS  Google Scholar 

  17. Superko HR: Did grandma give you heart disease? The new battle against coronary artery disease. Am J Cardiol 1998, 82:34–46.

    Article  Google Scholar 

  18. Superko HR: The atherogenic lipoprotein profile. Sci Med 1997, 4:36–45.

    CAS  Google Scholar 

  19. Krauss RM: Heterogeneity of plasma low-density lipoproteins and atherosclerosis risk. Curr Opin Lipidol 1994, 5:339–349.

    Article  PubMed  CAS  Google Scholar 

  20. Lamarche B, Tchernof A, Moorjani S, et al.: Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men. Prospective results from the Quebec cardiovascular study. Circulation 1997, 95:69–75.

    PubMed  CAS  Google Scholar 

  21. Miller BD, Alderman EL, Haskell WL, et al.: Predominance of dense low-density lipoprotein particles predicts angiographic benefit or therapy in the Stanford Coronary Risk Intervention project. Circulation 1996, 94:2146–2153.

    PubMed  CAS  Google Scholar 

  22. Watts GF, Mandalia S, Brunt JN, et al.: Independent associations between plasma lipoprotein subfraction levels and the course of coronary artery disease in the St. Thomas’ Atherosclerosis Regression Study (STARS). Metabolism 1993, 42:1461–1467.

    Article  PubMed  CAS  Google Scholar 

  23. Zambon A, Brown BG, Hokansen JE, Brunzell JD: Hepatic lipase changes predicts coronary artery disease regression/progression in the Familial Atherosclerosis Treatment Study. Circulation 1996, 94:I-539.

    Google Scholar 

  24. Superko HR, Krauss RM, Miller B: Prediction of LDL subclass pattern from Trig, HDLC, LDLC, apoB. Paper presented at the Cardiovascular Health. San Francisco, CA; February 19, 1998. 2

  25. Superko HR, Schott RJ, Barr C, Raul E: Comparison of traditional and alternative laboratory methods for the determination of lipid measurements, Lp(a) and LDL phenotype [abstract]. Circulation 2002, 105:14. This investigation reports the comparison of two alternative laboratory methods for the determination of LDL subclass distribution, Lp(a), and LDL particle number with traditional laboratory methods.

    Google Scholar 

  26. Lindgren FT, Jensen LC, Hatach FT: The isolation and quantitative analysis of serum lipoproteins. In Blood Lipids and Lipoproteins: Quantitation, Composition and Metabolism. Edited by Nelson GJ. New York: Wiley-Interscience; 1972:181–274.

    Google Scholar 

  27. Williams PT, Krauss RM, Vranizan KM, Wood PD: Changes in lipoprotein subfractions during dietinduced and exercise-induced weight loss in moderately overweight men. Circulation 1990, 81:1293–1304.

    PubMed  CAS  Google Scholar 

  28. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) [no authors listed]. JAMA 2001, 285:2486–2497.

  29. Brown MS, Goldstein JL: The LDL receptor concept: clinical and therapeutic implications. Atherosclerosis Rev 1988, 18:85.

    Google Scholar 

  30. Stone NJ, Levy RI, Fredrickson DS, Verter J: Coronary artery disease in 116 kindreds with familial type II hyperlipoproteinemia. Circulation 1974, 49:476–485.

    PubMed  CAS  Google Scholar 

  31. Innerarity TL: Familial hypobetalipoproteinemia and familial defective apolipoprotein B100: genetic disorders associated with apolipoprotein B. Curr Opin Lipidol 1990, 1:104–109.

    Article  Google Scholar 

  32. Staffa JA, Chang J, Green L: Cerivastatin and reports of fatal rhabdomyolysis. N Engl J Med 2002, 346:539–540.

    Article  PubMed  Google Scholar 

  33. Kane JP, Malloy MJ, Ports TA, et al.: Regression of coronary atherosclerosis during treatment of familial hypercholesterolemia with combined drug regimens. JAMA 1990, 264:3007–3012.

    Article  PubMed  CAS  Google Scholar 

  34. Williams D, Feely J: Pharmacokinetic-pharmacodynamic drug interactions with HMG-CoA reductase inhibitors. Clin Pharmacokinet 2002, 41:343–370.

    Article  PubMed  CAS  Google Scholar 

  35. Prueksaritanont T, Zhao JJ, Ma B, et al.: Mechanistic studies on metabolic interactions between gemfibrozil and statins. J Pharmacol Exp Ther 2002, 301:1042–1051. This report explains one possible mechanism for adverse interactions between gemfibrozil and statin medications.

    Article  PubMed  CAS  Google Scholar 

  36. Mahley RW: Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 1988, 240:622–630.

    Article  PubMed  CAS  Google Scholar 

  37. Gregg RE, Zech LA, Schaefer EJ, et al.: Abnormal in vivo metabolism of apolipoprotein E4 in humans. J Clin Invest 1986, 78:815–821.

    PubMed  CAS  Google Scholar 

  38. Superko HR: The effect of apolipoprotein E isoform difference on postprandial lipoprotein composition in patients matched for triglycerides, LDL-cholesterol and HDL-cholesterol. Artery 1991, 18:315–325.

    PubMed  CAS  Google Scholar 

  39. Brown AJ, Roberts DCK: The effect of fasting triacylglyceride concentration and apolipoprotein E polymorphism on postprandial lipemia. Arterioscler Thromb Vasc Biol 1991, 11:1737–1744.

    CAS  Google Scholar 

  40. Mahley RW: Atherogenic hyperlipoproteinemia. The cellular and molecular biology of plasma lipoproteins altered by dietary fat and cholesterol. Med Clin North Am 1982, 66:375–400.

    PubMed  CAS  Google Scholar 

  41. Corder EH, Saunders AM, Strittmatter WJ, et al.: Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993, 261:921–923.

    Article  PubMed  CAS  Google Scholar 

  42. Manttari M, Koskinen P, Ehnholm C, et al.: Apolipoprotein E polymorphism influences the serum cholesterol response to dietary intervention. Metabolism 1991, 40:217–221.

    Article  PubMed  CAS  Google Scholar 

  43. Davignon J, Gregg RE, Sing CF: Apolipoprotein E polymorphism and atherosclerosis. Arteriosclerosis 1988, 8:1–21.

    PubMed  CAS  Google Scholar 

  44. Scanu A: Lipoprotein(a): a genetic risk factor for premature coronary heart disease. JAMA 1992, 267:3326–3329.

    Article  PubMed  CAS  Google Scholar 

  45. Brown SA, Hutchinson R, Morrisett J, et al.: Plasma lipid, lipoprotein cholesterol, and apoprotein distributions in selected US communities. Arterioscler Thromb Vasc Biol 1993, 13:1139–1158.

    CAS  Google Scholar 

  46. Terres W, Tatsis E, Pfalzer B, et al.: Rapid angiographic progression of coronary artery disease in patients with elevated lipoprotein (a). Circulation 1995, 91:948–950.

    PubMed  CAS  Google Scholar 

  47. Sandkamp M, Funke H, Schelte H, et al.: Lipoprotein(a) is an independent risk factor for myocardial infarction at a young age. Clin Chem 1990, 36:20–23.

    PubMed  CAS  Google Scholar 

  48. Dahlen GH, Guyton JR, Attar M, et al.: Association of levels of lipoprotein Lp(a), plasma lipids, and other lipoproteins with coronary artery disease documented by angiography. Circulation 1986, 74:758–765.

    PubMed  CAS  Google Scholar 

  49. Budde T, Fechtrup C, Bosenberg E, et al.: Plasma lp(a) levels correlate with number, severity, and lengthextension of coronary lesions in male patients undergoing coronary arteriography for clinically suspected coronary atherosclerosis. Arterioscler Thromb Vasc Biol 1994, 14:1730–1736.

    CAS  Google Scholar 

  50. Marquez A, Mendoza S, Carrasco H, et al.: High Lp(a) in children from kindreds with parental premature myocardial infarction. Pediatr Res 1993, 34:670–674.

    Article  PubMed  CAS  Google Scholar 

  51. Schaefer EJ, Lamon-Fava S, Jenner JL, et al.: Lipoprotein(a) levels and risk of coronary heart disease in men. JAMA 1994, 271:999–1003.

    Article  PubMed  CAS  Google Scholar 

  52. Daida H, Lee YJ, Yokoi H, et al.: Prevention of restenosis after percutaneous transluminal coronary angioplasty by reducing lipoprotein (a) levels with low-density lipoprotein apheresis. Low-Density Lipoprotein Apheresis Angioplasty Restenosis Trial (L-ART) Group. Am J Cardiol 1994, 73:1037–1040.

    Article  PubMed  CAS  Google Scholar 

  53. Maher VMG, Brown BG, Marcovina S, et al.: Effects of lowering elevated LDL cholesterol on the cardiovascular risk of lipoprotein(a). JAMA 1995, 274:1771–1774.

    Article  PubMed  CAS  Google Scholar 

  54. Shlipak MG, Simon JA, Vittinghoff E, et al.: Estrogen and progestin, lipoprotein(a), and the risk of recurrent coronary heart disease events after menopause. JAMA 2000, 283:1845–1852. This report on the effect of HRT on Lp(a) values and clinical cardiovascular events raises the interesting issue of a subset of postmenopausal women with CAD who may benefit from HRT.

    Article  PubMed  CAS  Google Scholar 

  55. Brewer HB Jr: Effectiveness of diet and drugs in the treatment of patients with elevated Lp(a) levels. In Lipoprotein (a). Edited by Scanu AM. New York, NY:Academic Press; 1990:211–220.

    Google Scholar 

  56. Gurakar A, Hoeg JM, Kostner G, et al.: Levels of lipoprotein Lp(a) decline with neomycin and niacin treatment. Atherosclerosis 1985, 57:293–301.

    Article  PubMed  CAS  Google Scholar 

  57. Kim CJ, Jang HC, Cho DH, Min YK: Effects of hormone replacement therapy on lipoprotein (a) and lipids in postmenopausal women. Arterioscler Thromb Vasc Biol 1994, 14:275–281.

    CAS  Google Scholar 

  58. Shewmon DA, Stock JL, Rosen CJ, et al.: Tamoxifen and estrogen lower circulating lipoprotein (a) concentrations in healthy postmenopausal women. Arterioscler Thromb Vasc Biol 1994, 14:1586–1593.

    CAS  Google Scholar 

  59. Kostner GM, Gavish D, Leopold B, et al.: HMG-CoA reductase inhibitors lower LDL cholesterol without reducing Lp(a) levels. Circulation 1989, 80:1313–1319.

    PubMed  CAS  Google Scholar 

  60. Goldstein JL, Schrott HG, Hazzard WR, et al.: Hyperlipidemia in coronary heart disease II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest 1973, 52:1544–1568.

    Article  PubMed  CAS  Google Scholar 

  61. Sniderman A, Shapiro S, Marpole D, et al.: The association of coronary atherosclerosis and hyperapobetalipo-proteinemia (increased protein but normal cholesterol content in human plasma low density lipoprotein). Proc Natl Acad Sci U S A 1980, 97:604–608.

    Article  Google Scholar 

  62. Hunt SC, Wu LL, Hopkins PN, et al.: Apolipoprotein, low density lipoprotein subfraction, and insulin associations with familial combined hyperlipidemia (study of Utah patients with familial dyslipidemic hypertension). Arteriosclerosis 1989, 9:335–344.

    PubMed  CAS  Google Scholar 

  63. Reaven GM: Banting Lecture 1988. Role of insulin resistance in human disease. Diabetes 1988, 37:1595–1607.

    Article  PubMed  CAS  Google Scholar 

  64. Kwiterovich PO: Genetics and molecular biology of familial combined hyperlipidemia. Curr Opin Lipidol 1993, 4:133–143.

    Article  CAS  Google Scholar 

  65. Knopp RH, Walden CE, Retzlaff BM, et al.: Long-term cholesterol-lowering effects of 4 fat-restricted diets in hypercholesterolemic and combined hyperlipidemic men. The Dietary Alternatives Study. JAMA 1997, 278:1509–1515.

    Article  PubMed  CAS  Google Scholar 

  66. Brown BG, Zambon A, Poulin D, et al.: Use of niacin, statins, and resins in patients with combined hyperlipidemia. Am J Cardiol 1998, 81:52B-59B.

    Article  PubMed  CAS  Google Scholar 

  67. Berge KG, Canner PL, Hainline A: High density lipoprotein cholesterol and prognosis after myocardial infarction. Circulation 1982, 66:1176–1181.

    PubMed  CAS  Google Scholar 

  68. Goldbourt U, Cohen L, Neufeld HN: High density lipoprotein cholesterol: prognosis after myocardial infarction. Int J Epidemiol 1986, 15:51–55.

    Article  PubMed  CAS  Google Scholar 

  69. Johansson J, Carlson LA, Landow C, Hamsten A: High density lipoproteins and coronary atherosclerosis. A strong inverse relation with the largest particles is confined to normotriglyceridemic patients. Arterioscler Thromb Vasc Biol 1991, 11:174–182.

    CAS  Google Scholar 

  70. Vergani C, Beattale G: Familial hypo-alpha-lipoproteinemia. Clin Chim Acta 1981, 114:45–52.

    Article  PubMed  CAS  Google Scholar 

  71. Genest J, Bard JM, Fruchart JC, et al.: Familial hypoalphalipoproteinemia in premature CAD. Arterioscler Thromb Vasc Biol 1993, 13:1728–1737.

    Google Scholar 

  72. Ordovas JM, Schaefer EJ, Salem D, et al.: Apolipoprotein A-I gene polymorphism associated with premature coronary artery disease and familial hypoalphalipoproteinemia. N Engl J Med 1986, 314:671–677.

    Article  PubMed  CAS  Google Scholar 

  73. King JM, Crouse JR, Terry JG, et al.: Evaluation of effects of unmodified niacin on fasting and postprandial plasma lipids in normolipidemic men with hypoalphalipoproteinemia. Am J Med 1994, 97:323–331.

    Article  PubMed  CAS  Google Scholar 

  74. Miller M, Bachorik PS, McCrindle BW, Kwiterovich PO: Effect of gemfibrozil in men with primary isolated low high-density lipoprotein cholesterol: a randomized, double-blind, placebo-controlled, crossover study. Am J Med 1993, 94:7–20.

    Article  PubMed  CAS  Google Scholar 

  75. Selhub J, Jacques PF, Bostom AG, et al.: Association between plasma homocysteine concentrations and extracranial carotid artery stenosis. N Engl J Med 1995, 332:286–291.

    Article  PubMed  CAS  Google Scholar 

  76. Malinow MR, Nieto J, Szklo M, et al.: Carotid artery intimalmedial wall thickening and plasma homocyst(e)ine in asymptomatic adults. The Atherosclerosis Risk in Communities Study. Circulation 1993, 87:1107–1114.

    PubMed  CAS  Google Scholar 

  77. Graham IM, Daly LE, Refsum HM, et al.: Plasma homocysteine as a risk factor for vascular disease. The European Concerted Action Project. JAMA 1997, 277:1775–1781.

    Article  PubMed  CAS  Google Scholar 

  78. Schnyder G, Roffi M, Flammer Y, et al.: Association of plasma homocysteine with restenosis after percutaneous coronary angioplasty. Eur Heart J 2002, 23:726–733. The link between elevated plasma homocysteine levels and restenosis is reported in this article.

    Article  PubMed  CAS  Google Scholar 

  79. Zhao XQ, Kosinski AJS, Malinow MR, et al.: Association of total plasma homocysteine levels and 8-year mortality following PTCA or CABG in EAST. Circulation 2000, 102:II-699.

    Google Scholar 

  80. Schnyder G, Roffi M, Flammer Y, et al.: Effect of homocysteine-lowering therapy with folic acid, vitamin B12, and vitamin B6 on clinical outcome after percutaneous coronary intervention. JAMA 2002, 288:973–979. This is the first study to report a reduction in clinical outcomes following PCI and treatment for elevated homocysteine levels.

    Article  PubMed  CAS  Google Scholar 

  81. Blankenhorn DH, Malinow MR, Mack WJ: Colestipol plus niacin therapy elevates plasma homocyst(e)ine levels. Coron Artery Dis 1991, 2:357–360.

    Article  Google Scholar 

  82. Stulc T, Melenovsky V, Grauova B, et al.: Folate supplementation prevents plasma homocysteine increase after fenofibrate therapy. Nutrition 2001, 17:721–723. This paper reveals an increase in plasma homocysteine levels associated with fenofibrate treatment.

    Article  PubMed  CAS  Google Scholar 

  83. Schwaninger M, Ringleb P, Winter R, et al.: Elevated plasma concentrations of homocysteine in antiepileptic drug treatment. Epilepsia 1999, 40:345–350.

    Article  PubMed  CAS  Google Scholar 

  84. Liuzzo G, Biasucci LM, Rebuzzi AG, et al.: Plasma protein acute-phase response in unstable angina is not induced by ischemic injury. Circulation 1996, 94:2373–2380.

    PubMed  CAS  Google Scholar 

  85. Ridker PM, Hennekens CH, Buring JE, Rifai B: C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 2000, 342:836–843. This reports on the importance of elevated hs-CRP in CAD risk prediction in women and reveals an interaction with other cardiovascular risk factors.

    Article  PubMed  CAS  Google Scholar 

  86. Ridker PM, Glynn RJ, Hennekens CH: C-reactive protein adds to the predictive value of total and HDL cholesterol in determining risk of first myocardial infarction. Circulation 1998, 97:2007–2011.

    PubMed  CAS  Google Scholar 

  87. Toss H, Lindahl B, Siegbahn A, Wallentin L: Prognostic influence of increased fibrinogen and C-reactive aprotein levels in unstable coronary artery disease. FRISC Study Group. Fragmin during Instability in Coronary Artery Disease. Circulation 1997, 98:4204–4210.

    Google Scholar 

  88. Ferreiros ER, Boissonnet CP, Pizarro R, et al.: Independent prognostic value of elevated C-reactive protein in unstable angina. Circulation 1999, 100:1958–1963.

    PubMed  CAS  Google Scholar 

  89. Milazzo D, Biasucci LM, Luciani N, et al.: Elevated levels of C-reactive protein before coronary artery bypass grafting predict recurrence of ischemic events. Am J Cardiol 1999, 84:459–461.

    Article  PubMed  CAS  Google Scholar 

  90. Ridker PM, Cushman M, Stampfer MJ, et al.: Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med 1997, 336:973–979.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Superko, H.R., Chronos, N.A. Hypercholesterolemia and Dyslipidemia: Issues for the clinician. Curr Treat Options Cardio Med 5, 35–50 (2003). https://doi.org/10.1007/s11936-003-0013-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11936-003-0013-0

Keywords

Navigation