Skip to main content

Advertisement

Log in

PI3K and mTOR Signaling Pathways in Cancer: New Data on Targeted Therapies

  • Evolving Therapies (RM Bukowski, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

The mammalian target of rapamycin (mTOR) and the phosphoinositide 3-kinase (PI3K) signaling pathways are commonly deregulated in cancers and promote cellular growth, proliferation, and survival. mTOR is part of two complexes, mTORC1 and mTORC2, with different biochemical structures and substrates specificity. PI3K/AKT activation may result from genetic hits affecting different components of the pathway, whereas the mechanisms leading to constitutive mTORC1 activation remain globally unknown. The connections between the PI3K and mTOR kinases are multiple and complex, including common substrates, negative feedback loops, or direct activation mechanisms. First-generation allosteric mTOR inhibitors (eg, rapamycin) are mainly active on mTORC1 and mostly display cytostatic anti-tumor activity. Recently, second-generation catalytic mTOR inhibitors targeting both mTOR complexes 1 and 2 have been developed. Some of them also inhibit class IA PI3K. Here, we highlight recent data generated with these new inhibitors against cancer cells and their potential as anti-cancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9:550–62.

    Article  PubMed  CAS  Google Scholar 

  2. Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008;27:5497–510.

    Article  PubMed  CAS  Google Scholar 

  3. Alessi DR, Deak M, Casamayor A, et al. 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol. 1997;7:776–89.

    Article  PubMed  CAS  Google Scholar 

  4. Sarbassov DD, Guertin DA, Ali SM, et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307:1098–101.

    Article  PubMed  CAS  Google Scholar 

  5. Liu P, Cheng H, Roberts TM, et al. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8:627–44.

    Article  PubMed  CAS  Google Scholar 

  6. Stambolic V, Suzuki A, de la Pompa JL, et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell. 1998;95:29–39.

    Article  PubMed  CAS  Google Scholar 

  7. Gao T, Furnari F, Newton AC. PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell. 2005;18:13–24.

    Article  PubMed  CAS  Google Scholar 

  8. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12:21–35.

    Article  PubMed  CAS  Google Scholar 

  9. Blagden SP, Willis AE. The biological and therapeutic relevance of mRNA translation in cancer. Nat Rev. 2011;8:280–91.

    CAS  Google Scholar 

  10. Chapuis N, Tamburini J, Green AS, et al. Perspectives on inhibiting mTOR as a future treatment strategy for hematological malignancies. Leukemia. 2010;24:1686–99.

    Article  PubMed  CAS  Google Scholar 

  11. Dos Santos C, Demur C, Bardet V, et al. A critical role for Lyn in acute myeloid leukemia. Blood. 2008;111:2269–79.

    Article  PubMed  Google Scholar 

  12. Leseux L, Hamdi SM, Al Saati T. Syk-dependent mTOR activation in follicular lymphoma cells. Blood. 2006;108:4156–62.

    Article  PubMed  CAS  Google Scholar 

  13. Garcia-Martinez JM, Alessi DR. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J. 2008;416:375–85.

    Article  PubMed  CAS  Google Scholar 

  14. Guertin DA, Stevens DM, Thoreen CC, et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell. 2006;11:859–71.

    Article  PubMed  CAS  Google Scholar 

  15. • Guertin DA, Stevens DM, Saitoh M, et al. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell. 2009;15:148–59. This work underlines the function of mTORC2 in tumor development, suggesting that mTORC2 inhibitors may be efficient in cancer.

    Article  PubMed  CAS  Google Scholar 

  16. Smrz D, Kim MS, Zhang S, et al. MTORC1 and mTORC2 differentially regulate homeostasis of neoplastic and non-neoplastic human mast cells. Blood. 2011, in press.

  17. Maiso P, Liu Y, Morgan B, et al. Defining the role of TORC1 and TORC2 in multiple myeloma. Blood. 2011, in press.

  18. Sarbassov DD, Ali SM, Sengupta S, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell. 2006;22:159–68.

    Article  PubMed  CAS  Google Scholar 

  19. •• Zinzalla V, Stracka D, Oppliger W, et al. Activation of mTORC2 by association with the ribosome. Cell. 2011;144:757–68. This study provides evidence about the mechanisms of mTORC2 regulation downstream PI3K. PI3K activates mTORC2 by promoting its association with ribosomes.

    Article  PubMed  CAS  Google Scholar 

  20. Um SH, Frigerio F, Watanabe M, et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature. 2004;431:200–5.

    Article  PubMed  CAS  Google Scholar 

  21. Yu Y, Yoon SO, Poulogiannis G, et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science. 2011;332:1322–6.

    Article  PubMed  CAS  Google Scholar 

  22. Hsu PP, Kang SA, Rameseder J, et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science. 2011;332:1317–22.

    Article  PubMed  CAS  Google Scholar 

  23. Dancey J. mTOR signaling and drug development in cancer. Nat Rev Clin Oncol. 2010;7:209–19.

    Article  PubMed  CAS  Google Scholar 

  24. Kurmasheva RT, Huang S, Houghton PJ. Predicted mechanisms of resistance to mTOR inhibitors. Br J Cancer. 2006;95:955–60.

    Article  PubMed  CAS  Google Scholar 

  25. Tamburini J, Green AS, Bardet V, et al. Protein synthesis is resistant to rapamycin and constitutes a promising therapeutic target in acute myeloid leukemia. Blood. 2009;114:1618–27.

    Article  PubMed  CAS  Google Scholar 

  26. Thoreen CC, Kang SA, Chang JW, et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem. 2009;284:8023–32.

    Article  PubMed  CAS  Google Scholar 

  27. Wendel HG, De Stanchina E, Fridman JS, et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature. 2004;428:332–7.

    Article  PubMed  CAS  Google Scholar 

  28. Zindy P, Berge Y, Allal B, et al. Formation of the eIF4F Translation-Initiation Complex Determines Sensitivity to Anticancer Drugs Targeting the EGFR and HER2 Receptors. Cancer Res. 2011;71:4068–73.

    Article  PubMed  CAS  Google Scholar 

  29. O'Reilly KE, Rojo F, She QB, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006;66:1500–8.

    Article  PubMed  Google Scholar 

  30. Tamburini J, Chapuis N, Bardet V, et al. Mammalian target of rapamycin (mTOR) inhibition activates phosphatidylinositol 3-kinase/Akt by up-regulating insulin-like growth factor-1 receptor signaling in acute myeloid leukemia: rationale for therapeutic inhibition of both pathways. Blood. 2008;111:379–82.

    Article  PubMed  CAS  Google Scholar 

  31. Banerji U, Aghajanian C, Raymond E, et al. First results from a phase I trial of AZD8055, a dual mTORC1 and mTORC2 inhibitor. J Clin Oncol. 2011;29 (suppl; abstr 3096).

  32. Tan D, Dumez H, Olmos D, et al. First-in-human phase I study exploring three schedules of OSI-027, a novel small molecule TORC1/TORC2 inhibitor, in patients with advanced solid tumors and lymphoma. J Clin Oncol. 2010;28:15s. suppl; abstr 3006.

    Google Scholar 

  33. Patnaik, A., Appleman, LJ, Mountz, JM, et al. A first-in-human phase I study of intravenous PI3K inhibitor BAY 80–6946 in patients with advanced solid tumors: results of dose-escalation phase. J Clin Oncol. 2011;29 (suppl; abstr 3035).

  34. Moreno Garcia V, Baird RD, Shah KJ, et al. A phase I study evaluating GDC-0941, an oral phosphoinositide-3 kinase (PI3K) inhibitor, in patients with advanced solid tumors or multiple myeloma. J Clin Oncol. 2011;29 (suppl; abstr 3021).

  35. Von Hoff D, LoRusso P, Demetri GD, et al. A phase I dose-escalation study to evaluate GDC-0941, a pan-PI3K inhibitor, administered QD or BID in patients with advanced or metastatic solid tumors. J Clin Oncol. 2011;29 (suppl; abstr 3052^).

  36. Munster P, van der Noll R, Voest EE, et al. Phase I first-in-human study of the PI3 kinase inhibitor GSK2126458 (GSK458) in patients with advanced solid tumors (study P3K112826). J Clin Oncol. 2011;29 (suppl; abstr 3018).

    Google Scholar 

  37. Jimeno A, Herbst RS, Falchook GS, et al. Final results from a phase I, dose-escalation study of PX-866, an irreversible, pan-isoform inhibitor of PI3 kinase. J Clin Oncol. 2010;28:15s. suppl; abstr 3089.

    Google Scholar 

  38. Edelman G, Bedell C, Shapiro GSS, et al. J Clin Oncol. 2010;28:15s. suppl; abstr 3004.

    Google Scholar 

  39. Grana B, Burris HA, Rodon Ahnert J, et al. Oral PI3 kinase inhibitor BKM120 monotherapy in patients (pts) with advanced solid tumors: an update on safety and efficacy. J Clin Oncol. 2011;29 (suppl; abstr 3043).

    Google Scholar 

  40. Coutre S, Byrd JC, Furman RR, et al. Phase I study of CAL-101, an isoform-selective inhibitor of phosphatidylinositol 3kinase P110d, in patients with previously treated chronic lymphocytic leukemia. J Clin Oncol. 2011;29 (suppl; abstr 6631).

    Google Scholar 

  41. Wagner A, Bendell JC, Dolly S, et al. A first-in-human phase I study to evaluate GDC-0980, an oral PI3K/mTOR inhibitor, administered QD in patients with advanced solid tumors. J Clin Oncol. 2011;29 (suppl; abstr 3020).

    Google Scholar 

  42. Peyton J, Rodon Ahnert J, Burris H, et al. A dose-escalation study with the novel formulation of the oral pan-class I PI3K inhibitor BEZ235, solid dispersion system (SDS) sachet, in patients with advanced solid tumors. J Clin Oncol. 2011;29 (suppl; abstr 3066).

  43. Burris H, Rodon J, Sharma S, et al. First-in-human phase I study of the oral PI3K inhibitor BEZ235 in patients (pts) with advanced solid tumors. J Clin Oncol. 2010;28:15s. suppl; abstr 3005.

    Google Scholar 

  44. Brana I, LoRusso P, Baselga J, et al. A phase I dose-escalation study of the safety, pharmacokinetics (PK), and pharmacodynamics of XL765 (SAR245409), a PI3K/TORC1/TORC2 inhibitor administered orally to patients (pts) with advanced malignancies. J Clin Oncol. 2010;28:15s. suppl; abstr 3030.

    Google Scholar 

  45. Garlich J, Becker MD, SheltonCF, et al. Phase I study of novel prodrug dual PI3K/mTOR inhibitor SF1126 in B-cell malignancies. Blood. 2010;116:Abstract 1783.

  46. Mahadevan D, Chiorean EG, Harris W, et al. Phase I study of the multikinase prodrug SF1126 in solid tumors and B-cell malignancies. J Clin Oncol. 2011;29 (suppl; abstr 3015).

  47. Bowles DW, Jimeno A. New phosphatidylinositol 3-kinase inhibitors for cancer. Expert Opin Invest Drugs. 2011;20:507–18.

    Article  CAS  Google Scholar 

  48. Flinn I, Schreeder MT, Coutre SE et al. A phase I study of CAL-101, an isoform-selective inhibitor of phosphatidylinositol 3kinase P110δ, in combination with anti-CD20 monoclonal antibody therapy and/or bendamustine in patients with previously treated B-cell malignancies. J Clin Oncol. 2011;29 (suppl; abstr 3064).

  49. Garcia-Martinez JM, Moran J, Clarke RG, et al. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem J. 2009;421:29–42.

    Article  PubMed  CAS  Google Scholar 

  50. Chresta CM, Davies BR, Hickson I, et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res. 2010;70:288–98.

    Article  PubMed  CAS  Google Scholar 

  51. Feldman ME, Apsel B, Uotila A, et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 2009;7:e38.

    Article  PubMed  Google Scholar 

  52. • Janes MR, Limon JJ, So L, et al. Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nature Med. 2010;16:205–13. The comparison of rapamycin and TORKinib in mouse models of acute leukemia with Philadelphia chromosome showed a better efficacy (PP242) to induce cell death.

    Article  PubMed  CAS  Google Scholar 

  53. Altman JK, Sassano A, Kaur S, et al. Dual mTORC2/mTORC1 targeting results in potent suppressive effects on acute myeloid leukemia (AML) progenitors. Clin Cancer Res. 2011;17:4378–88.

    Article  PubMed  CAS  Google Scholar 

  54. Willems L, Chapuis N, Puissant A, et al. The dual mTORC1 and mTORC2 inhibitor AZD8055 has anti-tumor activity in acute myeloid leukemia. Leukaemia. 2011 in press.

  55. Evangelisti C, Ricci F, Tazzari P, et al. Targeted inhibition of mTORC1 and mTORC2 by active-site mTOR inhibitors has cytotoxic effects in T-cell acute lymphoblastic leukemia. Leukemia. 2011;25:781–91.

    Article  PubMed  CAS  Google Scholar 

  56. Bhagwat SV, Gokhale PC, Crew AP, et al. Preclinical characterization of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2: distinct from rapamycin. Mol Cancer ther. 2011;10:1394–406.

    Article  PubMed  CAS  Google Scholar 

  57. Rodrik-Outmezguine V, Chandarlapaty S, Pagano NC, et al. Biphasic regulation of AKT signaling. Cancer Discovery. 2011;1:248–59.

    Article  PubMed  CAS  Google Scholar 

  58. Jacinto E, Facchinetti V, Liu D, et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell. 2006;127:125–37.

    Article  PubMed  CAS  Google Scholar 

  59. Moore SF, Hunter RW, Hers I. mTORC2 protein-mediated protein kinase B (Akt) serine 473 phosphorylation is not required for Akt1 activity in human platelets. J Biol Chem. 2011;286:24553–60.

    Article  PubMed  CAS  Google Scholar 

  60. Raynaud FI, Eccles S, Clarke PA, et al. Pharmacologic characterization of a potent inhibitor of class I phosphatidylinositide 3-kinases. Cancer Res. 2007;67:5840–50.

    Article  PubMed  CAS  Google Scholar 

  61. Park S, Chapuis N, Bardet V, et al. PI-103, a dual inhibitor of Class IA phosphatidylinositide 3-kinase and mTOR, has antileukemic activity in AML. Leukemia. 2008;22:1698–706.

    Article  PubMed  CAS  Google Scholar 

  62. Chiarini F, Fala F, Tazzari PL, et al. Dual inhibition of class IA phosphatidylinositol 3-kinase and mammalian target of rapamycin as a new therapeutic option for T-cell acute lymphoblastic leukemia. Cancer Res. 2009;69:3520–8.

    Article  PubMed  CAS  Google Scholar 

  63. Maira SM, Stauffer F, Brueggen J, et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther. 2008;7:1851–63.

    Article  PubMed  CAS  Google Scholar 

  64. Serra V, Markman B, Scaltriti M, et al. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res. 2008;68:8022–30.

    Article  PubMed  CAS  Google Scholar 

  65. Chapuis N, Tamburini J, Green AS, et al. Dual inhibition of PI3K and mTORC1/2 signaling by NVP-BEZ235 as a new therapeutic strategy for acute myeloid leukemia. Clin Cancer Res. 2010;16:5424–35.

    Article  PubMed  CAS  Google Scholar 

  66. Xu CX, Li Y, Yue P, et al. The combination of RAD001 and NVP-BEZ235 exerts synergistic anticancer activity against non-small cell lung cancer in vitro and in vivo. PloS One. 2011;6:e20899.

    Article  PubMed  CAS  Google Scholar 

  67. Mazzoletti M, Bortolin F, Brunelli L, et al. Combination of PI3K/mTOR inhibitors: antitumor activity and molecular correlates. Cancer Res. 2011;71:4573–84.

    Article  PubMed  CAS  Google Scholar 

  68. Werzowa J, Koehrer S, Strommer S, et al. Vertical inhibition of the mTORC1/mTORC2/PI3K pathway shows synergistic effects against melanoma in vitro and in vivo. J Invest Dermatol. 2011;131:495–503.

    Article  PubMed  CAS  Google Scholar 

  69. Garlich JR, De P, Dey N, et al. A vascular targeted pan phosphoinositide 3-kinase inhibitor prodrug, SF1126, with antitumor and antiangiogenic activity. Cancer Res. 2008;68:206–15.

    Article  PubMed  CAS  Google Scholar 

  70. Carracedo A, Ma L, Teruya-Feldstein J, et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest. 2008;118:3065–74.

    PubMed  CAS  Google Scholar 

  71. Di Nicolantonio F, Arena S, Tabernero J, et al. Deregulation of the PI3K and KRAS signaling pathways in human cancer cells determines their response to everolimus. J Clin Invest. 2010;120:2858–66.

    Article  PubMed  Google Scholar 

  72. Steelman LS, Franklin RA, Abrams SL, et al. Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy. Leukemia. 2011;25:1080–94.

    Article  PubMed  CAS  Google Scholar 

  73. Serra V, Scaltriti M, Prudkin L, et al. PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer. Oncogene. 2011;30:2547–57.

    Article  PubMed  CAS  Google Scholar 

  74. Shapiro G, LoRusso P, Kwak EL, et al. Clinical combination of the MEK inhibitor GDC-0973 and the PI3K inhibitor GDC-0941: a first-in-human phase Ib study testing daily and intermittent dosing schedules in patients with advanced solid tumors. In 2011 ASCO Annual Meeting. J Clin Oncol. 2011;29 (suppl; abstr 3005^).

  75. Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, Serra V, Majumder PK, Baselga J, Rosen N. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell. 2011;19:58–71.

    Article  PubMed  CAS  Google Scholar 

  76. Moldovan C, Soria J, LoRusso PT, et al. A phase I safety and pharmacokinetic (PK) study of the PI3K inhibitor XL147 (SAR245408) in combination with erlotinib in patients (pts) with advanced solid tumors. In 2010 ASCO Annual Meeting. J Clin Oncol. 2010;28:15s. suppl; abstr 3070.

    Google Scholar 

  77. Lee Jr JT, Steelman LS, McCubrey JA. Phosphatidylinositol 3′-kinase activation leads to multidrug resistance protein-1 expression and subsequent chemoresistance in advanced prostate cancer cells. Cancer Res. 2004;64:8397–404.

    Article  PubMed  CAS  Google Scholar 

  78. Sokolosky ML, Stadelman KM, Chappell WH, et al. Involvement of Akt-1 and mTOR in Sensitivity of Breast Cancer to Targeted Therapy. Oncotarget. 2011;2:538–50.

    PubMed  Google Scholar 

  79. Wallin JJ, Guan J, Prior WW, et al. Nuclear phospho-Akt increase predicts synergy of PI3K inhibition and doxorubicin in breast and ovarian cancer. Sci Trans Med. 2010;2:48ra66.

    Article  Google Scholar 

  80. Bender A, Opel D, Naumann I, et al. PI3K inhibitors prime neuroblastoma cells for chemotherapy by shifting the balance towards pro-apoptotic Bcl-2 proteins and enhanced mitochondrial apoptosis. Oncogene. 2011;30:494–503.

    Article  PubMed  CAS  Google Scholar 

  81. Shao H, Gao C, Tang H, et al. Dual targeting of mTORC1/C2 complexes enhances histone deacetylase inhibitor-mediated anti-tumor efficacy in primary HCC cancer in vitro and in vivo. J Hepatol. 2011, in press.

  82. Gravina GL, Marampon F, Petini F, et al. The TORC1/TORC2 inhibitor, Palomid 529, reduces tumor growth and sensitizes to docetaxel and cisplatin in aggressive and hormone-refractory prostate cancer cells. Endoc Relat Cancer. 2011;18:385–400.

    Article  CAS  Google Scholar 

  83. Xu CX, Zhao L, Yue P, et al. Augmentation of NVP-BEZ235's anticancer activity against human lung cancer cells by blockage of autophagy. Cancer Biol Ther. 2011;12:549–55.

    Article  PubMed  CAS  Google Scholar 

  84. Fan QW, Cheng C, Hackett C, et al. Akt and autophagy cooperate to promote survival of drug-resistant glioma. Sci Signal. 2010;3:ra81.

    Article  PubMed  CAS  Google Scholar 

  85. Huang S, Yang ZJ, Yu C, et al. Inhibition of mTOR kinase by AZD8055 can antagonize chemotherapy-induced cell death through autophagy induction and downregulation of p62/sequestosome 1. J Biol Chem. 2011, in press.

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Bouscary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willems, L., Tamburini, J., Chapuis, N. et al. PI3K and mTOR Signaling Pathways in Cancer: New Data on Targeted Therapies. Curr Oncol Rep 14, 129–138 (2012). https://doi.org/10.1007/s11912-012-0227-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-012-0227-y

Keywords

Navigation