Skip to main content

Advertisement

Log in

HIV and Stem Cell Transplantation

  • Transplant and Oncology (M Ison, Section Editor)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

In human immunodeficiency virus (HIV)-infected persons, the incidence of hematologic malignancies, including leukemia and lymphoma, is increased despite the use of successful antiretroviral therapy. Hematopoietic stem cell transplantation (SCT) is emerging as a safe and effective therapy for HIV-infected persons with hematologic malignancies. Management of these patients is complicated by drug–drug interactions involving antiretroviral therapy (ART) that may impact conditioning agent efficacy and metabolism of immunosuppressive medications and potentiate drug toxicities. As such, optimal strategies for ART remain controversial. We discuss recent advances, controversies, and future directions related to SCT in HIV-infected persons, including the investigation of allogeneic SCT as a strategy for HIV cure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AIDS:

Acquired immunodeficiency syndrome

ADM:

AIDS-defining malignancies

alloSCT:

Allogeneic stem cell transplantation

autoSCT:

Autologous stem cell transplantation

CNI:

Calcineurin inhibitor

CFAR:

Center for AIDS Research

CCR5:

Chemokine receptor 5

ART:

Combination antiretroviral therapy

CBT:

Cord blood transplant

CHOP:

Cyclophosphamide, doxorubicin, vincristine and prednisone

CyA:

Cyclosporine

CYP450:

Cytochrome p450

HL:

Hodgkin lymphoma

INSTI:

Integrase Strand Transfer inhibitor

KS:

Kaposi sarcoma

mTOR:

Mammalian target of rapamycin

NADM:

Non-AIDS-defining malignancies

NHL:

Non-Hodgkin lymphoma

NNRTI:

Non-nucleoside reverse transcriptase inhibitor

NRTI:

Nucleoside or nucleotide analogue reverse transcriptase inhibitor

PI:

Protease inhibitor

SIR:

Standardized incidence ratio

SCT:

Stem cell transplantation

SEER:

Surveillance, Epidemiology, and End Results Program registry

TAC:

Tacrolimus

UDP-1A:

Uridine diphosphate glucuronyltransferase-1A

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Schneider E, Whitmore S, Glynn KM, Dominguez K, Mitsch A, McKenna MT. Revised surveillance case definitions for HIV infection among adults, adolescents, and children aged <18 months and for HIV infection and AIDS among children aged 18 months to <13 years--United States, 2008. MMWR Recomm Rep : Morbid Mortal Wkly Rep Recomm Rep / Centers for Dis Control. 2008;57(Rr-10):1–12.

    Google Scholar 

  2. Patel P, Hanson DL, Sullivan PS, et al. Incidence of types of cancer among HIV-infected persons compared with the general population in the United States, 1992-2003. Ann Intern Med. 2008;148(10):728–36.

    PubMed  Google Scholar 

  3. Engels EA, Pfeiffer RM, Goedert JJ, et al. Trends in cancer risk among people with AIDS in the United States 1980-2002. AIDS (London, England). 2006;20(12):1645–54.

    Google Scholar 

  4. HIV IC, Coutinho RA. Highly active antiretroviral therapy and incidence of cancer in human immunodeficiency virus-infected adults. J Natl Cancer Ins. 2000;92(15): 1823-1830.

  5. Shiels MS, Engels EA, Linet MS, et al. The epidemic of non-Hodgkin lymphoma in the United States: disentangling the effect of HIV, 1992-2009. Cancer Epidemiol Biomark Prev : Publ Am Assoc Cancer Res, Cosponsored Am Soc Prev Oncol. 2013;22(6):1069–78.

    Google Scholar 

  6. Shiels MS, Pfeiffer RM, Hall HI, et al. Proportions of Kaposi sarcoma, selected non-Hodgkin lymphomas, and cervical cancer in the United States occurring in persons with AIDS, 1980-2007. JAMA : J Am Med Assoc. 2011;305(14):1450–9.

    CAS  Google Scholar 

  7. Gopal S, Patel MR, Yanik EL, et al. Temporal trends in presentation and survival for HIV-associated lymphoma in the antiretroviral therapy era. J Natl Cancer Inst. 2013;105(16):1221–9.

    PubMed  Google Scholar 

  8. Dal Maso L, Polesel J, Serraino D, et al. Pattern of cancer risk in persons with AIDS in Italy in the HAART era. Br J Cancer. 2009;100(5):840–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Bohlius J, Schmidlin K, Boue F, et al. HIV-1-related Hodgkin lymphoma in the era of combination antiretroviral therapy: incidence and evolution of CD4(+) T-cell lymphocytes. Blood. 2011;117(23):6100–8.

    CAS  PubMed  Google Scholar 

  10. Seaberg EC, Wiley D, Martinez-Maza O, et al. Cancer incidence in the multicenter AIDS Cohort Study before and during the HAART era: 1984 to 2007. Cancer. 2010;116(23):5507–16.

    PubMed Central  PubMed  Google Scholar 

  11. Clifford GM, Rickenbach M, Lise M, et al. Hodgkin lymphoma in the Swiss HIV Cohort Study. Blood. 2009;113(23):5737–42.

    CAS  PubMed  Google Scholar 

  12. Simard EP, Pfeiffer RM, Engels EA. Cumulative incidence of cancer among individuals with acquired immunodeficiency syndrome in the United States. Cancer. 2011;117(5):1089–96.

    PubMed Central  PubMed  Google Scholar 

  13. Herida M, Mary-Krause M, Kaphan R, et al. Incidence of non-AIDS-defining cancers before and during the highly active antiretroviral therapy era in a cohort of human immunodeficiency virus-infected patients. J Clin Oncol : Off J Am Soc Clin Oncol. 2003;21(18):3447–53.

    Google Scholar 

  14. Powles T, Robinson D, Stebbing J, et al. Highly active antiretroviral therapy and the incidence of non-AIDS-defining cancers in people with HIV infection. J Clin Oncol : Off j Am Soc Clin Oncol. 2009;27(6):884–90.

    Google Scholar 

  15. Achenbach CJ, Buchanan AL, Cole SR et al. HIV Viremia and Incidence of Non-Hodgkin Lymphoma in Patients Successfully Treated With Antiretroviral Therapy. Clin Infect Dis. 2014;58(11):1599–606.

    CAS  PubMed  Google Scholar 

  16. Shiels MS, Koritzinsky EH, Clarke CA, Suneja G, Morton LM, Engels EA. Prevalence of HIV Infection among U.S. Hodgkin Lymphoma Cases. Cancer Epidemiol Biomark Prev : Publ Am Assoc Cancer Res, Cosponsored Am Soc Prev Oncol. 2014;23(2):274–81.

    CAS  Google Scholar 

  17. Achenbach CJ, Cole SR, Kitahata MM, et al. Mortality after cancer diagnosis in HIV-infected individuals treated with antiretroviral therapy. AIDS (London, England). 2011;25(5):691–700.

    Google Scholar 

  18. Shiels MS, Cole SR, Kirk GD, Poole C. A meta-analysis of the incidence of non-AIDS cancers in HIV-infected individuals. J Acquir Immune Defic Syndr. 2009;52(5):611–22. 1999.

    PubMed Central  PubMed  Google Scholar 

  19. Shiels MS, Pfeiffer RM, Gail MH, et al. Cancer burden in the HIV-infected population in the United States. J Natl Cancer Inst. 2011;103(9):753–62.

    PubMed Central  PubMed  Google Scholar 

  20. Antiretroviral Therapy Cohort Collaboration. Causes of death in HIV-1-infected patients treated with antiretroviral therapy, 1996-2006: collaborative analysis of 13 HIV cohort studies. Clin Infect Dis. 2010;50(10):1387-96.

  21. Simard EP, Pfeiffer RM, Engels EA. Mortality due to cancer among people with AIDS: a novel approach using registry-linkage data and population attributable risk methods. AIDS (London, England). 2012;26(10):1311–8.

    Google Scholar 

  22. Yanik EL, Napravnik S, Cole SR, et al. Incidence and timing of cancer in HIV-infected individuals following initiation of combination antiretroviral therapy. Clin Infect Dis : Off Publ Infect Dis Soc Am. 2013;57(5):756–64.

    CAS  Google Scholar 

  23. Silverberg MJ, Chao C, Leyden WA, et al. HIV infection, immunodeficiency, viral replication, and the risk of cancer. Cancer Epidemiol Biomark Prev : Publ Am Assoc Cancer Res, Cosponsored Am Soc Prev Oncol. 2011;20(12):2551–9.

    CAS  Google Scholar 

  24. Engsig FN, Zangerle R, Katsarou O et al. Long-term Mortality in HIV-Positive Individuals Virally Suppressed for >3 Years With Incomplete CD4 Recovery. Clin Infect Dis. 2014;58(9):1312-21.

  25. Kitahata MM, Gange SJ, Abraham AG, et al. Effect of early versus deferred antiretroviral therapy for HIV on survival. N Engl J Med. 2009;360(18):1815–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Hocqueloux L, Avettand-Fenoel V, Jacquot S, et al. Long-term antiretroviral therapy initiated during primary HIV-1 infection is key to achieving both low HIV reservoirs and normal T cell counts. J Antimicrob Chemother. 2013;68(5):1169–78.

    CAS  PubMed  Google Scholar 

  27. Le T, Wright EJ, Smith DM, et al. Enhanced CD4+ T-cell recovery with earlier HIV-1 antiretroviral therapy. N Engl J Med. 2013;368(3):218–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Kaplan LD, Straus DJ, Testa MA, et al. Low-dose compared with standard-dose m-BACOD chemotherapy for non-Hodgkin's lymphoma associated with human immunodeficiency virus infection. Natl Inst Allergy Infect Dis AIDS Clin Trials Group N Engl J Med. 1997;336(23):1641–8.

    CAS  Google Scholar 

  29. Antinori A, Cingolani A, Alba L, et al. Better response to chemotherapy and prolonged survival in AIDS-related lymphomas responding to highly active antiretroviral therapy. AIDS (London, England). 2001;15(12):1483–91.

    CAS  Google Scholar 

  30. Castillo JJ, Echenique IA. Rituximab in combination with chemotherapy versus chemotherapy alone in HIV-associated non-Hodgkin lymphoma: a pooled analysis of 15 prospective studies. Am J Hematol. 2012;87(3):330–3.

    CAS  PubMed  Google Scholar 

  31. Vaccher E, Spina M, di Gennaro G, et al. Concomitant cyclophosphamide, doxorubicin, vincristine, and prednisone chemotherapy plus highly active antiretroviral therapy in patients with human immunodeficiency virus-related, non-Hodgkin lymphoma. Cancer. 2001;91(1):155–63.

    CAS  PubMed  Google Scholar 

  32. Krishnan A, Molina A, Zaia J, et al. Durable remissions with autologous stem cell transplantation for high-risk HIV-associated lymphomas. Blood. 2005;105(2):874–8.

    CAS  PubMed  Google Scholar 

  33. Re A, Cattaneo C, Michieli M, et al. High-dose therapy and autologous peripheral-blood stem-cell transplantation as salvage treatment for HIV-associated lymphoma in patients receiving highly active antiretroviral therapy. J Clin Oncol : Off J Am Soc Clin Oncol. 2003;21(23):4423–7.

    CAS  Google Scholar 

  34. Serrano D, Carrion R, Balsalobre P, et al. HIV-associated lymphoma successfully treated with peripheral blood stem cell transplantation. Exp Hematol. 2005;33(4):487–94.

    CAS  PubMed  Google Scholar 

  35. Spitzer TR, Ambinder RF, Lee JY, et al. Dose-reduced busulfan, cyclophosphamide, and autologous stem cell transplantation for human immunodeficiency virus-associated lymphoma: AIDS Malignancy Consortium study 020. Biol blood Marrow Transpl : J Am Soc Blood Marrow Transpl. 2008;14(1):59–66.

    CAS  Google Scholar 

  36. Diez-Martin JL, Balsalobre P, Re A, et al. Comparable survival between HIV+and HIV- non-Hodgkin and Hodgkin lymphoma patients undergoing autologous peripheral blood stem cell transplantation. Blood. 2009;113(23):6011–4.

    CAS  PubMed  Google Scholar 

  37. Krishnan A, Palmer JM, Zaia JA, Tsai NC, Alvarnas J, Forman SJ. HIV status does not affect the outcome of autologous stem cell transplantation (ASCT) for non-Hodgkin lymphoma (NHL). Biol Blood Marrow Transpl : J Am Soc Blood Marrow Transpl. 2010;16(9):1302–8.

    Google Scholar 

  38. Hutter G, Zaia JA. Allogeneic haematopoietic stem cell transplantation in patients with human immunodeficiency virus: the experiences of more than 25 years. Clin Exp Immunol. 2011;163(3):284–95. This is a comprehensive review of all reports of allogeneic stem cell transplantation in HIV-infected individuals.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Gupta V, Tomblyn M, Pedersen TL, et al. Allogeneic hematopoietic cell transplantation in human immunodeficiency virus-positive patients with hematologic disorders: a report from the center for international blood and marrow transplant research. Biol Blood Marrow Transpl : J Am Soc Blood Marrow Transpl. 2009;15(7):864–71.

    Google Scholar 

  40. Wolf T, Rickerts V, Staszewski S, et al. First case of successful allogeneic stem cell transplantation in an HIV-patient who acquired severe aplastic anemia. Haematologica. 2007;92(4):e56–8.

    CAS  PubMed  Google Scholar 

  41. Srinivas TR, Meier-Kriesche HU, Kaplan B. Pharmacokinetic principles of immunosuppressive drugs. Am J Transpl : Off J Am Soc Transpl Am Soc Transpl Surg. 2005;5(2):207–17.

    CAS  Google Scholar 

  42. Bower M, Powles T, Stebbing J, Thirlwell C. Potential antiretroviral drug interactions with cyclophosphamide, Doxorubicin, and Etoposide. J Clin Oncol : Off J Am Soc Clin Oncol. 2005;23(6):1328–9. author reply 1329-1330.

    Google Scholar 

  43. Wong AY, Marcotte S, Laroche M, et al. Safety and efficacy of CHOP for treatment of diffuse large B-cell lymphoma with different combination antiretroviral therapy regimens: SCULPT study. Antivir Ther. 2013;18(5):699–707.

    CAS  PubMed  Google Scholar 

  44. Terrault NA, Roland ME, Schiano T, et al. Outcomes of liver transplant recipients with hepatitis C and human immunodeficiency virus coinfection. Liver Transpl : Off Publ Am Assoc Study Liver Dis Int Liver Transpl Soc. 2012;18(6):716–26.

    Google Scholar 

  45. Stock PG, Barin B, Murphy B, et al. Outcomes of kidney transplantation in HIV-infected recipients. N Engl J Med. 2010;363(21):2004–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. van Maarseveen EM, van Zuilen AD, Mudrikova T. Outcomes of kidney transplantation in HIV-infected recipients. N Engl J Med. 2011;364(7):683. author reply 684.

    PubMed  Google Scholar 

  47. Frassetto LA, Browne M, Cheng A, et al. Immunosuppressant pharmacokinetics and dosing modifications in HIV-1 infected liver and kidney transplant recipients. Am J Transpl : Off J Am Soc Transpl Am Soc Transpl Surg. 2007;7(12):2816–20.

    CAS  Google Scholar 

  48. Tricot L, Teicher E, Peytavin G, et al. Safety and efficacy of raltegravir in HIV-infected transplant patients cotreated with immunosuppressive drugs. Am J Transpl : Off J Am Soc Transpl Am Soc Transpl Surg. 2009;9(8):1946–52.

    CAS  Google Scholar 

  49. Moreno A, Perez-Elias MJ, Casado JL, et al. Raltegravir-based highly active antiretroviral therapy has beneficial effects on the renal function of human immunodeficiency virus-infected patients after solid organ transplantation. Liver Transpl : Off Publ Am Assoc Liver Dis Int Liver Transpl Soc. 2010;16(4):530–2.

    Google Scholar 

  50. Dufty NE, Gilleran G, Hawkins D, Else LJ, Taylor S. Pharmacokinetic interaction of maraviroc with tacrolimus in a patient coinfected with HIV and hepatitis B virus following hepatic transplant due to hepatocellular carcinoma. J Antimicrob Chemother. 2013;68(4):972–4.

    CAS  PubMed  Google Scholar 

  51. Reshef R, Luger SM, Hexner EO, et al. Blockade of lymphocyte chemotaxis in visceral graft-versus-host disease. N Engl J Med. 2012;367(2):135–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Holkmann Olsen C, Mocroft A, Kirk O, et al. Interruption of combination antiretroviral therapy and risk of clinical disease progression to AIDS or death. HIV Med. 2007;8(2):96–104.

    CAS  PubMed  Google Scholar 

  53. Chilton D, Dervisevic S, Pillay D, et al. Determinants of HIV drug resistance mutations in plasma virus after treatment interruption. AIDS (London, England). 2005;19(18):2174–5.

    Google Scholar 

  54. El-Sadr WM, Lundgren J, Neaton JD, et al. CD4+ count-guided interruption of antiretroviral treatment. N Engl J Med. 2006;355(22):2283–96.

    PubMed  Google Scholar 

  55. Geretti AM, Fox Z, Johnson JA, et al. Sensitive assessment of the virologic outcomes of stopping and restarting non-nucleoside reverse transcriptase inhibitor-based antiretroviral therapy. PLoS One. 2013;8(7):e69266.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Gabarre J, Marcelin AG, Azar N, et al. High-dose therapy plus autologous hematopoietic stem cell transplantation for human immunodeficiency virus (HIV)-related lymphoma: results and impact on HIV disease. Haematologica. 2004;89(9):1100–8.

    PubMed  Google Scholar 

  57. Cillo AR, Krishnan A, Mitsuyasu RT, et al. Plasma viremia and cellular HIV-1 DNA persist despite autologous hematopoietic stem cell transplantation for HIV-related lymphoma. J Acquir Immune Defic Syndr. 2013;63(4):438–41. 1999.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Balsalobre P, Diez-Martin JL, Re A, et al. Autologous stem-cell transplantation in patients with HIV-related lymphoma. J Clin Oncol : Off J Am Soc Clin Oncol. 2009;27(13):2192–8.

    Google Scholar 

  59. Avettand-Fenoel V, Mahlaoui N, Chaix ML, et al. Failure of bone marrow transplantation to eradicate HIV reservoir despite efficient HAART. AIDS (London, England). 2007;21(6):776–7.

    Google Scholar 

  60. Polizzotto MN, Skinner M, Cole-Sinclair MF, Opat SS, Spencer A, Avery S. Allo-SCT for hematological malignancies in the setting of HIV. Bone Marrow Transplant. 2010;45(3):584–6.

    CAS  PubMed  Google Scholar 

  61. Sora F, Antinori A, Piccirillo N, et al. Highly active antiretroviral therapy and allogeneic CD34(+) peripheral blood progenitor cells transplantation in an HIV/HCV coinfected patient with acute myeloid leukemia. Exp Hematol. 2002;30(3):279–84.

    CAS  PubMed  Google Scholar 

  62. Kang EM, de Witte M, Malech H, et al. Nonmyeloablative conditioning followed by transplantation of genetically modified HLA-matched peripheral blood progenitor cells for hematologic malignancies in patients with acquired immunodeficiency syndrome. Blood. 2002;99(2):698–701.

    CAS  PubMed  Google Scholar 

  63. Bryant A, Milliken S. Successful reduced-intensity conditioning allogeneic HSCT for HIV-related primary effusion lymphoma. Biol Blood Marrow Transpl : J Am Soc Blood Marrow Transpl. 2008;14(5):601–2.

    Google Scholar 

  64. Tomonari A, Takahashi S, Shimohakamada Y, et al. Unrelated cord blood transplantation for a human immunodeficiency virus-1-seropositive patient with acute lymphoblastic leukemia. Bone Marrow Transplant. 2005;36(3):261–2.

    CAS  PubMed  Google Scholar 

  65. Woolfrey AE, Malhotra U, Harrington RD, et al. Generation of HIV-1-specific CD8+ cell responses following allogeneic hematopoietic cell transplantation. Blood. 2008;112(8):3484–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Gopal S, Patel MR, Yanik EL, et al. Association of early HIV viremia with mortality after HIV-associated lymphoma. AIDS (London, England). 2013;27(15):2365–73.

    CAS  Google Scholar 

  67. Hutter G, Nowak D, Mossner M, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009;360(7):692–8.

    PubMed  Google Scholar 

  68. Hassett JM, Zaroulis CG, Greenberg ML, Siegal FP. Bone marrow transplantation in AIDS. N Engl J Med. 1983;309(11):665.

    CAS  PubMed  Google Scholar 

  69. Lane HC, Masur H, Longo DL, et al. Partial immune reconstitution in a patient with the acquired immunodeficiency syndrome. N Engl J Med. 1984;311(17):1099–103.

    CAS  PubMed  Google Scholar 

  70. Yarchoan R, Klecker RW, Weinhold KJ, et al. Administration of 3'-azido-3'-deoxythymidine, an inhibitor of HTLV-III/LAV replication, to patients with AIDS or AIDS-related complex. Lancet. 1986;1(8481):575–80.

    CAS  PubMed  Google Scholar 

  71. Holland HK, Saral R, Rossi JJ, et al. Allogeneic bone marrow transplantation, zidovudine, and human immunodeficiency virus type 1 (HIV-1) infection. Studies in a patient with non-Hodgkin lymphoma. Ann Intern Med. 1989;111(12):973–81.

    CAS  PubMed  Google Scholar 

  72. Lane HC, Zunich KM, Wilson W, et al. Syngeneic bone marrow transplantation and adoptive transfer of peripheral blood lymphocytes combined with zidovudine in human immunodeficiency virus (HIV) infection. Ann Intern Med. 1990;113(7):512–9.

    CAS  PubMed  Google Scholar 

  73. Angelucci E, Lucarelli G, Baronciani D, et al. Bone marrow transplantation in an HIV positive thalassemic child following therapy with azidothymidine. Haematologica. 1990;75(3):285–7.

    CAS  PubMed  Google Scholar 

  74. Aboulafia DM, Mitsuyasu RT, Miles SA. Syngeneic bone-marrow transplantation and failure to eradicate HIV. AIDS (London, England). 1991;5(3):344.

    CAS  Google Scholar 

  75. Torlontano G, Di Bartolomeo P, Di Girolamo G, et al. AIDS-related complex treated by antiviral drugs and allogeneic bone marrow transplantation following conditioning protocol with busulphan, cyclophosphamide and cyclosporin. Haematologica. 1992;77(3):287–90.

    CAS  PubMed  Google Scholar 

  76. Giri N, Vowels MR, Ziegler JB. Failure of allogeneic bone marrow transplantation to benefit HIV infection. J Paediatr Child Health. 1992;28(4):331–3.

    CAS  PubMed  Google Scholar 

  77. Finzi D, Hermankova M, Pierson T, et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science. 1997;278(5341):1295–300.

    CAS  PubMed  Google Scholar 

  78. Wong JK, Hezareh M, Gunthard HF, et al. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science. 1997;278(5341):1291–5.

    CAS  PubMed  Google Scholar 

  79. Chun TW, Stuyver L, Mizell SB, et al. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci U S A. 1997;94(24):13193–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Carter CC, Onafuwa-Nuga A, McNamara LA, et al. HIV-1 infects multipotent progenitor cells causing cell death and establishing latent cellular reservoirs. Nat Med. 2010;16(4):446–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Durand CM, Blankson JN, Siliciano RF. Developing strategies for HIV-1 eradication. Trends Immunol. 2012;33(11):554–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Josefsson L, Eriksson S, Sinclair E, et al. Hematopoietic precursor cells isolated from patients on long-term suppressive HIV therapy did not contain HIV-1 DNA. J Infect Dis. 2012;206(1):28–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Eisele E, Siliciano RF. Redefining the viral reservoirs that prevent HIV-1 eradication. Immunity. 2012;37(3):377–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Simonelli C, Zanussi S, Pratesi C, et al. Immune recovery after autologous stem cell transplantation is not different for HIV-infected versus HIV-uninfected patients with relapsed or refractory lymphoma. Clin Infect Dis : Off Publ Infect Dis Soc Am. 2010;50(12):1672–9.

    CAS  Google Scholar 

  85. Choe H, Farzan M, Sun Y, et al. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell. 1996;85(7):1135–48.

    CAS  PubMed  Google Scholar 

  86. Alkhatib G, Combadiere C, Broder CC, et al. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science. 1996;272(5270):1955–8.

    CAS  PubMed  Google Scholar 

  87. Deng H, Liu R, Ellmeier W, et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature. 1996;381(6584):661–6.

    CAS  PubMed  Google Scholar 

  88. Doranz BJ, Rucker J, Yi Y, et al. A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell. 1996;85(7):1149–58.

    CAS  PubMed  Google Scholar 

  89. Dragic T, Litwin V, Allaway GP, et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature. 1996;381(6584):667–73.

    CAS  PubMed  Google Scholar 

  90. Liu R, Paxton WA, Choe S, et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell. 1996;86(3):367–77.

    CAS  PubMed  Google Scholar 

  91. Hutter G, Thiel E. Allogeneic transplantation of CCR5-deficient progenitor cells in a patient with HIV infection: an update after 3 years and the search for patient no. 2. AIDS (London, England). 2011;25(2):273–4.

    Google Scholar 

  92. Yukl SA, Boritz E, Busch M, et al. Challenges in detecting HIV persistence during potentially curative interventions: a study of the Berlin patient. PLoS Pathog. 2013;9(5):e1003347.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Gonzalez G, Park S, Chen D, Armitage S, Shpall E, Behringer R. Identification and frequency of CCR5Delta32/Delta32 HIV-resistant cord blood units from Houston area hospitals. HIV Med. 2011;12(8):481–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Corbyn Z. Plan launched to find HIV cure. Lancet. 2012;380(9838):203–4.

    PubMed  Google Scholar 

  95. Chen TBM TK, Territo M, Chow R, Tonai R, Petz L, Rossi J, et al. The Feasibility of using CCR5Δ32/Δ32 Hematopoietic Stem Cell Transplants for Immune Reconstitution in HIV-Infected Children. Biol Blood Marrow Transpl. 2008;14(2):119.

    Google Scholar 

  96. Smith AR, Wagner JE. Alternative haematopoietic stem cell sources for transplantation: place of umbilical cord blood. Br J Haematol. 2009;147(2):246–61.

    PubMed Central  PubMed  Google Scholar 

  97. Laughlin MJ, Eapen M, Rubinstein P, et al. Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. N Engl J Med. 2004;351(22):2265–75.

    CAS  PubMed  Google Scholar 

  98. Rocha V, Labopin M, Sanz G, et al. Transplants of umbilical-cord blood or bone marrow from unrelated donors in adults with acute leukemia. N Engl J Med. 2004;351(22):2276–85.

    CAS  PubMed  Google Scholar 

  99. Paquette J. Pediatric patient dies after undergoing historic transplant at U of M. 2013. http://www.healthtalk.umn.edu/2013/07/13/pediatric-patient-dies-after-undergoing-historic-transplantat-u-of-m/. Accessed 6 Aug 2014.

  100. P1107 (DAIDS ID 11878): Cord Blood Transplantation using CCR5-Δ32 Donor Cells for the Treatment of HIV and Underlying Disease. http://impaactnetwork.org/studies/P1107.asp. Accessed 6 Aug 2014.

  101. DiGiusto DL, Krishnan A, Li L, et al. RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma. Sci Transl Med. 2010;2(36):36ra43.

    PubMed Central  PubMed  Google Scholar 

  102. Holt N, Wang J, Kim K, et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1in vivo. Nat Biotechnol. 2010;28(8):839–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Morgan RA, Walker R. Gene therapy for AIDS using retroviral mediated gene transfer to deliver HIV-1 antisense TAR and transdominant Rev protein genes to syngeneic lymphocytes in HIV-1 infected identical twins. Hum Gene Ther. 1996;7(10):1281–306.

    CAS  PubMed  Google Scholar 

  104. Amado RG, Mitsuyasu RT, Rosenblatt JD, et al. Anti-human immunodeficiency virus hematopoietic progenitor cell-delivered ribozyme in a phase I study: myeloid and lymphoid reconstitution in human immunodeficiency virus type-1-infected patients. Hum Gene Ther. 2004;15(3):251–62.

    CAS  PubMed  Google Scholar 

  105. Mitsuyasu RT, Merigan TC, Carr A, et al. Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nat Med. 2009;15(3):285–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Henrich TJ, Hu Z, Li JZ, et al. Long-term reduction in peripheral blood HIV type 1 reservoirs following reduced-intensity conditioning allogeneic stem cell transplantation. J Infect Dis. 2013;207(11):1694–702.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Henrich TJ, Hanhauser E, Sirignano MN et al. HIV-1 Rebound Following Allogeneic Stem Cell Transplantation and Treatment Interruption. Conference on Retroviruses and Opportunistic Infections (CROI) Boston, MA, USA.

  108. Molina A, Krishnan AY, Nademanee A, et al. High dose therapy and autologous stem cell transplantation for human immunodeficiency virus-associated non-Hodgkin lymphoma in the era of highly active antiretroviral therapy. Cancer. 2000;89(3):680–9.

    CAS  PubMed  Google Scholar 

  109. Goto H, Hagiwara S, Hirai R, et al. Case of relapsed AIDS-related plasmablastic lymphoma treated with autologous stem cell transplantation and highly active antiretroviral therapy. Rare Tumor. 2011;3(1):e11.

    Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Richard F. Ambinder for his careful reading of the manuscript.

Compliance with Ethics Guidelines

Conflict of Interest

Christine Durand, Ignacio Echenique, and George Nelson declare no conflicts of interest. Valentina Stosor has received a grant from NIH/NIAID.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the authors.

Financial Support

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine M. Durand.

Additional information

This article is part of the Topical Collection on Transplant and Oncology

Ignacio A. Echenique and George E. Nelson these authors contributed equally to the work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Echenique, I.A., Nelson, G.E., Stosor, V. et al. HIV and Stem Cell Transplantation. Curr Infect Dis Rep 16, 424 (2014). https://doi.org/10.1007/s11908-014-0424-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11908-014-0424-y

Keywords

Navigation