Skip to main content

Advertisement

Log in

HIV Drug Resistance and the Advent of Integrase Inhibitors

  • HIV/AIDS (R MacArthur, Section Editor)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

This review focuses on the topic of HIV integrase inhibitors that are potent antiretroviral drugs that efficiently decrease viral load in patients. However, emergence of resistance mutations against this new class of drugs represents a threat to their long-term efficacy. Here, we provide new information about the most recent mutations identified and other mutations that confer resistance to several integrase inhibitors, such as new resistance mutations—for example, G118R, R263K, and S153Y—that have been identified through in vitro selection studies with second-generation integrase strand transfer inhibitors (INSTIs). These add to the three main resistance pathways involving mutations at positions Y143, N155, and Q148. Deep sequencing, structural modeling, and biochemical analyses are methods that currently help in the understanding of the mechanisms of resistance conferred by these mutations. Although the new resistance mutations appear to confer only low levels of cross-resistance to second-generation drugs, the Q148 pathway with numerous secondary mutations has the potential to significantly decrease susceptibility to all drugs of the INSTI family of compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of outstanding importance

  1. Whitney JB, Lim SY, Wainberg MA. Evolutionary mechanisms of retroviral persistence. AIDS Rev. 2011;13(4):234–9.

    PubMed  Google Scholar 

  2. Wainberg MA, Zaharatos GJ, Brenner BG. Development of antiretroviral drug resistance. N Engl J Med. 2011;365(7):637–46.

    Article  PubMed  CAS  Google Scholar 

  3. Delelis O, Carayon K, Saib A, Deprez E, Mouscadet JF. Integrase and integration: biochemical activities of HIV-1 integrase. Retrovirology. 2008;5:114.

    Article  PubMed  CAS  Google Scholar 

  4. Li X, Krishnan L, Cherepanov P, Engelman A. Structural biology of retroviral DNA integration. Virology. 2011;411(2):194–205.

    Article  PubMed  CAS  Google Scholar 

  5. Hazuda DJ, Felock P, Witmer M, Wolfe A, Stillmock K, Grobler JA, et al. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science. 2000;287(5453):646–50.

    Article  PubMed  CAS  Google Scholar 

  6. Engelman A, Cherepanov P. The structural biology of HIV-1: mechanistic and therapeutic insights. Nat Rev Microbiol. 2012;10(4):279–90.

    Article  PubMed  CAS  Google Scholar 

  7. Schafer JJ, Squires KE. Integrase inhibitors: a novel class of antiretroviral agents. Ann Pharmacother. 2010;44(1):145–56.

    Article  PubMed  CAS  Google Scholar 

  8. Cooper DA, Steigbigel RT, Gatell JM, Rockstroh JK, Katlama C, Yeni P, et al. Subgroup and resistance analyses of raltegravir for resistant HIV-1 infection. N Engl J Med. 2008;359(4):355–65.

    Article  PubMed  CAS  Google Scholar 

  9. Briz V, Garrido C, Poveda E, Morello J, Barreiro P, de Mendoza C, et al. Raltegravir and etravirine are active against HIV type 1 group O. AIDS Res Hum Retroviruses. 2009;25(2):225–7.

    Article  PubMed  CAS  Google Scholar 

  10. Nguyen BY, Isaacs RD, Teppler H, Leavitt RY, Sklar P, Iwamoto M, et al. Raltegravir: the first HIV-1 integrase strand transfer inhibitor in the HIV armamentarium. Ann N Y Acad Sci. 2011;1222:83–9.

    Article  PubMed  CAS  Google Scholar 

  11. • Steigbigel RT, Cooper DA, Kumar PN, Eron JE, Schechter M, Markowitz M, et al. Raltegravir with optimized background therapy for resistant HIV-1 infection. N Engl J Med. 2008;359(4):339–54. This study was the first to demonstrate the safety and efficacy of a HIV integrase inhibitor in a large randomized phase 3 clinical trial. Follow-up data have documented the superiority of Ralegravir versus a NNRTI, efavirenz, over a period of 5 years in patients also receiving the double nucleoside combination of TDF/FTC.

    Article  PubMed  Google Scholar 

  12. Wills T, Vega V. Elvitegravir: a once-daily inhibitor of HIV-1 integrase. Expert Opin Investig Drugs. 2012;21(3):395–401.

    Article  PubMed  CAS  Google Scholar 

  13. Katlama C, Murphy R. Dolutegravir for the treatment of HIV. Expert Opin Investig Drugs. 2012;21(4):523–30.

    Article  PubMed  CAS  Google Scholar 

  14. Kobayashi M, Nakahara K, Seki T, Miki S, Kawauchi S, Suyama A, et al. Selection of diverse and clinically relevant integrase inhibitor-resistant human immunodeficiency virus type 1 mutants. Antiviral Res. 2008;80(2):213–22.

    Article  PubMed  CAS  Google Scholar 

  15. Nakahara K, Wakasa-Morimoto C, Kobayashi M, Miki S, Noshi T, Seki T, et al. Secondary mutations in viruses resistant to HIV-1 integrase inhibitors that restore viral infectivity and replication kinetics. Antiviral Res. 2009;81(2):141–6.

    Article  PubMed  CAS  Google Scholar 

  16. Steigbigel RT, Cooper DA, Teppler H, Eron JJ, Gatell JM, Kumar PN, et al. Long-term efficacy and safety of Raltegravir combined with optimized background therapy in treatment-experienced patients with drug-resistant HIV infection: week 96 results of the BENCHMRK 1 and 2 Phase III trials. Clin Infect Dis. 2010;50(4):605–12.

    Article  PubMed  CAS  Google Scholar 

  17. Goethals O, Van Ginderen M, Vos A, Cummings MD, Van Der Borght K, Van Wesenbeeck L, et al. Resistance to raltegravir highlights integrase mutations at codon 148 in conferring cross-resistance to a second-generation HIV-1 integrase inhibitor. Antiviral Res. 2011;91(2):167–76.

    Article  PubMed  CAS  Google Scholar 

  18. Bar-Magen T, Sloan RD, Faltenbacher VH, Donahue DA, Kuhl BD, Oliveira M, et al. Comparative biochemical analysis of HIV-1 subtype B and C integrase enzymes. Retrovirology. 2009;6:103.

    Article  PubMed  CAS  Google Scholar 

  19. Bar-Magen T, Sloan RD, Donahue DA, Kuhl BD, Zabeida A, Xu H, et al. Identification of novel mutations responsible for resistance to MK-2048, a second-generation HIV-1 integrase inhibitor. J Virol. 2010;84(18):9210–6.

    Article  PubMed  CAS  Google Scholar 

  20. Van Wesenbeeck L, Rondelez E, Feyaerts M, Verheyen A, Van der Borght K, Smits V, et al. Cross-resistance profile determination of two second-generation HIV-1 integrase inhibitors using a panel of recombinant viruses derived from raltegravir-treated clinical isolates. Antimicrob Agents Chemother. 2011;55(1):321–5.

    Article  PubMed  CAS  Google Scholar 

  21. Song I, Borland J, Min S, Lou Y, Chen S, Patel P, et al. Effects of etravirine alone and with ritonavir-boosted protease inhibitors on the pharmacokinetics of dolutegravir. Antimicrob Agents Chemother. 2011;55(7):3517–21.

    Article  PubMed  CAS  Google Scholar 

  22. Min S, Song I, Borland J, Chen S, Lou Y, Fujiwara T, et al. Pharmacokinetics and safety of S/GSK1349572, a next-generation HIV integrase inhibitor, in healthy volunteers. Antimicrob Agents Chemother. 2010;54(1):254–8.

    Article  PubMed  CAS  Google Scholar 

  23. Min S, Sloan L, Dejesus E, Hawkins T, McCurdy L, Song I, et al. Antiviral activity, safety, and pharmacokinetics/pharmacodynamics of dolutegravir as 10-day monotherapy in HIV-1-infected adults. Aids. 2011;25(14):1737–45.

    Article  PubMed  CAS  Google Scholar 

  24. Kobayashi M, Yoshinaga T, Seki T, Wakasa-Morimoto C, Brown KW, Ferris R, et al. In Vitro antiretroviral properties of S/GSK1349572, a next-generation HIV integrase inhibitor. Antimicrob Agents Chemother. 2011;55(2):813–21.

    Article  PubMed  CAS  Google Scholar 

  25. Goethals O, Vos A, Van Ginderen M, Geluykens P, Smits V, Schols D, et al. Primary mutations selected in vitro with raltegravir confer large fold changes in susceptibility to first-generation integrase inhibitors, but minor fold changes to inhibitors with second-generation resistance profiles. Virology. 2010;402(2):338–46.

    Article  PubMed  CAS  Google Scholar 

  26. Hare S, Smith SJ, Metifiot M, Jaxa-Chamiec A, Pommier Y, Hughes SH, et al. Structural and functional analyses of the second-generation integrase strand transfer inhibitor Dolutegravir (S/GSK1349572). Mol Pharmacol 2011.

  27. Seki T, Kobayashi M, Wakasa-Morimoto C, Yoshinaga T, Sato A, Fujiwara T, et al. S/GSK1349572 is a potent next generation HIV integrase inhibitor and demonstrates a superior resistance profile substantiated with 60 integrase mutant molecular clones. 17th CROI, Conference on retroviruses and opportunistic infections, San Francisco, CA. 2010.

  28. • Quashie PK, Mesplede T, Han YS, Oliveira M, Singhroy DN, Fujiwara T, et al. Characterization of the R263K mutation in HIV-1 integrase that confers low-level resistance to the second-generation integrase strand transfer inhibitor Dolutegravir. J Virol. 2012;86(5):2696–705. This study was the first to definitively demonstrate that resistance against dolutegravir may be likely to occur, based on a R263K mutation in the HIV integrase gene.

    Article  PubMed  CAS  Google Scholar 

  29. Krishnan L, Li X, Naraharisetty HL, Hare S, Cherepanov P, Engelman A. Structure-based modeling of the functional HIV-1 intasome and its inhibition. Proc Natl Acad Sci U S A. 2010;107(36):15910–5.

    Article  PubMed  CAS  Google Scholar 

  30. Hare S, Gupta SS, Valkov E, Engelman A, Cherepanov P. Retroviral intasome assembly and inhibition of DNA strand transfer. Nature. 2010;464(7286):232–6.

    Article  PubMed  CAS  Google Scholar 

  31. Cherepanov P, Maertens GN, Hare S. Structural insights into the retroviral DNA integration apparatus. Curr Opin Struct Biol. 2011;21(2):249–56.

    Article  PubMed  CAS  Google Scholar 

  32. Maertens GN, Hare S, Cherepanov P. The mechanism of retroviral integration from X-ray structures of its key intermediates. Nature. 2010;468(7321):326–9.

    Article  PubMed  CAS  Google Scholar 

  33. Espeseth AS, Felock P, Wolfe A, Witmer M, Grobler J, Anthony N, et al. HIV-1 integrase inhibitors that compete with the target DNA substrate define a unique strand transfer conformation for integrase. Proc Natl Acad Sci U S A. 2000;97(21):11244–9.

    Article  PubMed  CAS  Google Scholar 

  34. Hare S, Vos AM, Clayton RF, Thuring JW, Cummings MD, Cherepanov P. Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance. Proc Natl Acad Sci U S A. 2010;107(46):20057–62.

    Article  PubMed  CAS  Google Scholar 

  35. Grobler JA, Stillmock K, Hu B, Witmer M, Felock P, Espeseth AS, et al. Diketo acid inhibitor mechanism and HIV-1 integrase: implications for metal binding in the active site of phosphotransferase enzymes. Proc Natl Acad Sci U S A. 2002;99(10):6661–6.

    Article  PubMed  CAS  Google Scholar 

  36. Bacchi A, Carcelli M, Compari C, Fisicaro E, Pala N, Rispoli G, et al. Investigating the role of metal chelation in HIV-1 integrase strand transfer inhibitors. J Med Chem. 2011;54(24):8407–20.

    Article  PubMed  CAS  Google Scholar 

  37. Bacchi A, Carcelli M, Compari C, Fisicaro E, Pala N, Rispoli G, et al. HIV-1 IN strand transfer chelating inhibitors: a focus on metal binding. Mol Pharm. 2011;8(2):507–19.

    Article  PubMed  CAS  Google Scholar 

  38. Johnson AA, Santos W, Pais GC, Marchand C, Amin R, Burke Jr TR, et al. Integration requires a specific interaction of the donor DNA terminal 5'-cytosine with glutamine 148 of the HIV-1 integrase flexible loop. J Biol Chem. 2006;281(1):461–7.

    Article  PubMed  CAS  Google Scholar 

  39. Jayappa KD, Ao Z, Yang M, Wang J, Yao X. Identification of critical motifs within HIV-1 integrase required for importin alpha3 interaction and viral cDNA nuclear import. J Mol Biol. 2011;410(5):847–62.

    Article  PubMed  CAS  Google Scholar 

  40. Metifiot M, Vandegraaff N, Maddali K, Naumova A, Zhang X, Rhodes D, et al. Elvitegravir overcomes resistance to raltegravir induced by integrase mutation Y143. Aids. 2011;25(9):1175–8.

    Article  PubMed  CAS  Google Scholar 

  41. Kawonga M, Blanchard K, Cooper D, Cullingworth L, Dickson K, Harrison T, et al. Integrating medical abortion into safe abortion services: experience from three pilot sites in South Africa. J Fam Plann Reprod Health Care. 2008;34(3):159–64.

    Article  PubMed  Google Scholar 

  42. • Hightower KE, Wang R, Deanda F, Johns BA, Weaver K, Shen Y, et al. Dolutegravir (S/GSK1349572) exhibits significantly slower dissociation than raltegravir and elvitegravir from wild-type and integrase inhibitor-resistant HIV-1 integrase-DNA complexes. Antimicrob Agents Chemother. 2011;55(10):4552–9. This article shows that dolutegravir is likely to be active on a once-daily basis due to the fact that it binds almost irreversibly to the HIV integrase molecule.

    Article  PubMed  CAS  Google Scholar 

  43. Copeland RA, Pompliano DL, Meek TD. Drug-target residence time and its implications for lead optimization. Nat Rev Drug Discov. 2006;5(9):730–9.

    Article  PubMed  CAS  Google Scholar 

  44. Oliveira M, Brenner BG, Wainberg MA. Isolation of drug-resistant mutant HIV variants using tissue culture drug selection. Methods Mol Biol. 2009;485:427–33.

    Article  PubMed  CAS  Google Scholar 

  45. Goethals O, Clayton R, Van Ginderen M, Vereycken I, Wagemans E, Geluykens P, et al. Resistance mutations in human immunodeficiency virus type 1 integrase selected with elvitegravir confer reduced susceptibility to a wide range of integrase inhibitors. J Virol. 2008;82(21):10366–74.

    Article  PubMed  CAS  Google Scholar 

  46. Jones G, Ledford R, Yu F, Chen X, Miller MD, Tsiang M, et al. In vitro resistance profile of HIV-1 mutants selected by the HIV-1 integrase inhibitor, GS-9137 (JTK-303). 14th CROI, Conference on Retroviruses and opportunistic infections, Los Angeles, California, 2007.

  47. Shimura K, Kodama E, Sakagami Y, Matsuzaki Y, Watanabe W, Yamataka K, et al. Broad antiretroviral activity and resistance profile of the novel human immunodeficiency virus integrase inhibitor elvitegravir (JTK-303/GS-9137). J Virol. 2008;82(2):764–74.

    Article  PubMed  CAS  Google Scholar 

  48. Codoner FM, Pou C, Thielen A, Garcia F, Delgado R, Dalmau D, et al. Dynamic escape of pre-existing raltegravir-resistant HIV-1 from raltegravir selection pressure. Antiviral Res. 2010;88(3):281–6.

    Article  PubMed  CAS  Google Scholar 

  49. Armenia D, Vandenbroucke I, Fabeni L, Van Marck H, Cento V, D'Arrigo R, et al. Study of genotypic and phenotypic HIV-1 dynamics of integrase mutations during raltegravir treatment: a refined analysis by ultra-deep 454 pyrosequencing. J Infect Dis. 2012;205(4):557–67.

    Article  PubMed  CAS  Google Scholar 

  50. Winters B, Lloyd RJ, Miller M, Holodniy M. Evolution of IN inhibitor resistance mutations in patients failling elvitegravir-containing regimens. 19th CROI, Conference on retroviruses and opportunistic infections, Seattle, WA, 2012. Abstract: p. 701.

  51. Canducci F, Sampaolo M, Marinozzi MC, Boeri E, Spagnuolo V, Galli A, et al. Dynamic patterns of human immunodeficiency virus type 1 integrase gene evolution in patients failing raltegravir-based salvage therapies. Aids. 2009;23(4):455–60.

    Article  PubMed  CAS  Google Scholar 

  52. Charpentier C, Karmochkine M, Laureillard D, Tisserand P, Belec L, Weiss L, et al. Drug resistance profiles for the HIV integrase gene in patients failing raltegravir salvage therapy. HIV Med. 2008;9(9):765–70.

    Article  PubMed  CAS  Google Scholar 

  53. Fransen S, Karmochkine M, Huang W, Weiss L, Petropoulos CJ, Charpentier C. Longitudinal analysis of raltegravir susceptibility and integrase replication capacity of human immunodeficiency virus type 1 during virologic failure. Antimicrob Agents Chemother. 2009;53(10):4522–4.

    Article  PubMed  CAS  Google Scholar 

  54. Malet I, Delelis O, Soulie C, Wirden M, Tchertanov L, Mottaz P, et al. Quasispecies variant dynamics during emergence of resistance to raltegravir in HIV-1-infected patients. J Antimicrob Chemother. 2009;63(4):795–804.

    Article  PubMed  CAS  Google Scholar 

  55. Mouscadet JF, Delelis O, Marcelin AG, Tchertanov L. Resistance to HIV-1 integrase inhibitors: a structural perspective. Drug Resist Updat. 2010;13(4–5):139–50.

    Article  PubMed  CAS  Google Scholar 

  56. Blanco JL, Varghese V, Rhee SY, Gatell JM, Shafer RW. HIV-1 integrase inhibitor resistance and its clinical implications. J Infect Dis. 2011;203(9):1204–14.

    Article  PubMed  CAS  Google Scholar 

  57. Malet I, Fourati S, Charpentier C, Morand-Joubert L, Armenia D, Wirden M, et al. The HIV-1 integrase G118R mutation confers raltegravir resistance to the CRF02_AG HIV-1 subtype. J Antimicrob Chemother. 2011;66(12):2827–30.

    Article  PubMed  CAS  Google Scholar 

  58. Sato A, Seki T, Kobayashi M, Yoshinaga T, Fujiwara T, Underwood M, et al. In vitro passage of drug resistant HIV-1 against a next generation integrase inhibitor (INI), S/GSK1349572. 49th ICAAC, San Francisco, CA. 2009.

  59. Margot NA, Hluhanich RM, Jones GS, Andreatta KN, Tsiang M, McColl DJ, et al. In vitro resistance selections using elvitegravir, raltegravir, and two metabolites of elvitegravir M1 and M4. Antiviral Res. 2012;93(2):288–96.

    Article  PubMed  CAS  Google Scholar 

  60. Canducci F, Ceresola ER, Boeri E, Spagnuolo V, Cossarini F, Castagna A, et al. Cross-resistance profile of the novel integrase inhibitor Dolutegravir (S/GSK1349572) using clonal viral variants selected in patients failing raltegravir. J Infect Dis. 2011;204(11):1811–5.

    Article  PubMed  CAS  Google Scholar 

  61. Stellbrink HJ, Reynes J, Lazzarin A, Voronin E, Pulido F, Felizarta F, et al. Dolutegravir in combination therapy exhibits rapid and sustained antiviral response in ARV-naïve adults: 96-week results from SPRING-1 (ING112276). 19th CROI, Conference on retroviruses and opportunistic infections, Seattle, WA, 2012. Abstract: p. 102LB.

  62. van Lunzen J, Maggiolo F, Arribas JR, Rakhmanova A, Yeni P, Young B, et al. Once daily dolutegravir (S/GSK1349572) in combination therapy in antiretroviral-naive adults with HIV: planned interim 48 week results from SPRING-1, a dose-ranging, randomised, phase 2b trial. Lancet Infect Dis. 2012;12(2):111–8.

    Article  PubMed  CAS  Google Scholar 

  63. Enron J, Kumar P, Lazzarin A, Richmond G, Soriano V, Huang J, et al. DTG in Subjects with HIV Exhibiting RAL Resistance: Functional Monotherapy Results of VIKING Study Cohort II. 18th CROI, Conference on retroviruses and opportunistic infections, Boston, MA, 2011. Abstract: p. 151LB.

  64. Kobayashi M, Seki T, Yoshinaga T, Sato A, Fujiwara T, Underwood M, et al. Antiviral Activity in vitro of the INI, Dolutegravir, against Raltegravir-resistant HIV-2 Mutants. 19th CROI, Conference on retroviruses and opportunistic infections, Seattle, WA, 2012. Abstract: p. 691.

  65. Gupta SP, Nagappa AN. Design and development of integrase inhibitors as anti-HIV agents. Curr Med Chem. 2003;10(18):1779–94.

    Article  PubMed  CAS  Google Scholar 

  66. Sluis-Cremer N, Tachedjian G. Modulation of the oligomeric structures of HIV-1 retroviral enzymes by synthetic peptides and small molecules. Eur J Biochem. 2002;269(21):5103–11.

    Article  PubMed  CAS  Google Scholar 

  67. Maurin C, Bailly F, Cotelle P. Structure-activity relationships of HIV-1 integrase inhibitors–enzyme-ligand interactions. Curr Med Chem. 2003;10(18):1795–810.

    Article  PubMed  CAS  Google Scholar 

  68. Singh SB, Jayasuriya H, Salituro GM, Zink DL, Shafiee A, Heimbuch B, et al. The complestatins as HIV-1 integrase inhibitors. Efficient isolation, structure elucidation, and inhibitory activities of isocomplestatin, chloropeptin I, new complestatins, A and B, and acid-hydrolysis products of chloropeptin I. J Nat Prod. 2001;64(7):874–82.

    Article  PubMed  CAS  Google Scholar 

  69. Jing N, Xu X. Rational drug design of DNA oligonucleotides as HIV inhibitors. Curr Drug Targets Infect Disord. 2001;1(2):79–90.

    Article  PubMed  CAS  Google Scholar 

  70. Brigo A, Mustata GI, Briggs JM, Moro S. Discovery of HIV-1 integrase inhibitors through a novel combination of ligand and structure-based drug design. Med Chem. 2005;1(3):263–75.

    Article  PubMed  CAS  Google Scholar 

  71. de Soultrait VR, Desjobert C, Tarrago-Litvak L. Peptides as new inhibitors of HIV-1 reverse transcriptase and integrase. Curr Med Chem. 2003;10(18):1765–78.

    Article  PubMed  Google Scholar 

  72. ••Hazuda DJ, Felock P, Witmer M, Wolfe A, Stillmock K, Grobler JA, et al. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science. 2000;287(5453):646–50. This article was the first to demonstrate that the development of integrase strand transfer inhibitors was possible and opened up the field of anti-integrase drug development.

    Article  PubMed  CAS  Google Scholar 

  73. Reinke R, Lee DJ, Robinson WE. Inhibition of human immunodeficiency virus type 1 isolates by the integrase inhibitor L-731,988, a diketo Acid. Antimicrob Agents Chemother. 2002;46(10):3301–3.

    Article  PubMed  CAS  Google Scholar 

  74. Hazuda D, Iwamoto M, Wenning L. Emerging pharmacology: inhibitors of human immunodeficiency virus integration. Annu Rev Pharmacol Toxicol. 2009;49:377–94.

    Article  PubMed  CAS  Google Scholar 

  75. Marchand C, Zhang X, Pais GC, Cowansage K, Neamati N, Burke TR, et al. Structural determinants for HIV-1 integrase inhibition by beta-diketo acids. J Biol Chem. 2002;277(15):12596–603.

    Article  PubMed  CAS  Google Scholar 

  76. FDA. FDA approval of Isentress (raltegravir). 2007 [cited 2011 07/08/2011].

  77. Steigbigel RT, Cooper DA, Teppler H, Eron JJ, Gatell JM, Kumar PN, et al. Long-term efficacy and safety of Raltegravir combined with optimized background therapy in treatment-experienced patients with drug-resistant HIV infection: week 96 results of the BENCHMRK 1 and 2 Phase III trials. Clin Infect Dis. 2010;50(4):605–12.

    Article  PubMed  CAS  Google Scholar 

  78. Donahue DA, Sloan RD, Kuhl BD, Bar-Magen T, Schader SM, Wainberg MA. Stage-dependent inhibition of HIV-1 replication by antiretroviral drugs in cell culture. Antimicrob Agents Chemother. 2010;54(3):1047–54.

    Article  PubMed  CAS  Google Scholar 

  79. Grinsztejn B, Nguyen BY, Katlama C, Gatell JM, Lazzarin A, Vittecoq D, et al. Safety and efficacy of the HIV-1 integrase inhibitor raltegravir (MK-0518) in treatment-experienced patients with multidrug-resistant virus: a phase II randomised controlled trial. Lancet. 2007;369(9569):1261–9.

    Article  PubMed  CAS  Google Scholar 

  80. Iwamoto M. Rifampin (RIF) modestly reduces plasma levels of MK-0518, in 8th Int. Congr. Drug Therapy in HIV Infection (HIV-8), L.S. Wenning LA, Kost JT, Mangin E, et al, editors. 2006: Glasgow, Scotland.

  81. Markowitz M, Nguyen BY, Gotuzzo E, Mendo F, Ratanasuwan W, Kovacs C, et al. Rapid and durable antiretroviral effect of the HIV-1 Integrase inhibitor raltegravir as part of combination therapy in treatment-naive patients with HIV-1 infection: results of a 48-week controlled study. J Acquir Immune Defic Syndr. 2007;46(2):125–33.

    Article  PubMed  CAS  Google Scholar 

  82. Eron JJ, Rockstroh JK, Reynes J, Andrade-Villanueva J, Ramalho-Madruga JV, Bekker LG, et al. Raltegravir once daily or twice daily in previously untreated patients with HIV-1: a randomised, active-controlled, phase 3 non-inferiority trial. Lancet Infect Dis, 2011.

  83. Vispo E, Barreiro P, Maida I, Mena A, Blanco F, Rodríguez-Novoa S, et al. Simplification from protease inhibitors to once- or twice-daily raltegravir: the ODIS trial. HIV Clin Trials. 2010;11(4):197–204.

    Article  PubMed  CAS  Google Scholar 

  84. Lanzafame M, Hill A, Lattuada E, Calcagno A, Bonora S. Raltegravir: is a 400 mg once-daily dose enough? J Antimicrob Chemother. 2010;65(3):595–7.

    Article  PubMed  CAS  Google Scholar 

  85. Malet I, Delelis O, Valantin MA, Montes B, Soulie C, Wirden M, et al. Mutations associated with failure of raltegravir treatment affect integrase sensitivity to the inhibitor in vitro. Antimicrob Agents Chemother. 2008;52(4):1351–8.

    Article  PubMed  CAS  Google Scholar 

  86. Garrido C, de Mendoza C, Soriano V. Resistance to integrase inhibitors. Enferm Infecc Microbiol Clin. 2008;26 Suppl 12:40–6.

    Article  PubMed  Google Scholar 

  87. Bar-Magen T, Donahue DA, McDonough EI, Kuhl BD, Faltenbacher VH, Xu H, et al. HIV-1 subtype B and C integrase enzymes exhibit differential patterns of resistance to integrase inhibitors in biochemical assays. AIDS. 2010;24(14):2171–9.

    Article  PubMed  CAS  Google Scholar 

  88. Delelis O, Malet I, Na L, Tchertanov L, Calvez V, Marcelin AG, et al. The G140S mutation in HIV integrases from raltegravir-resistant patients rescues catalytic defect due to the resistance Q148H mutation. Nucleic Acids Res. 2009;37(4):1193–201.

    Article  PubMed  CAS  Google Scholar 

  89. Johnson VA, Brun-Vézinet F, Clotet B, Günthard HF, Kuritzkes DR, Pillay D, et al. Update of the drug resistance mutations in HIV-1: December 2010. Top HIV Med. 2010;18(5):156–63.

    PubMed  Google Scholar 

  90. Hu Z, Kuritzkes DR. Effect of raltegravir resistance mutations in HIV-1 integrase on viral fitness. J Acquir Immune Defic Syndr. 2010;55(2):148–55.

    Article  PubMed  CAS  Google Scholar 

  91. Canducci F, Barda B, Ceresola E, Spagnuolo V, Sampaolo M, Boeri E, et al. Evolution patterns of raltegravir-resistant mutations after integrase inhibitor interruption. Clin Microbiol Infect. 2011;17(6):928–34.

    Article  PubMed  CAS  Google Scholar 

  92. Cooper DA, Steigbigel RT, Gatell JM, Rockstroh JK, Katlama C, Yeni P, et al. Subgroup and resistance analyses of raltegravir for resistant HIV-1 infection. N Engl J Med. 2008;359(4):355–65.

    Article  PubMed  CAS  Google Scholar 

  93. Blanco JL, Varghese V, Rhee SY, Gatell JM, Shafer RW. HIV-1 integrase inhibitor resistance and its clinical implications. J Infect Dis. 2011;203(9):1204–14.

    Article  PubMed  CAS  Google Scholar 

  94. Eron JJ, Young B, Cooper DA, Youle M, Dejesus E, Andrade-Villanueva J, et al. Switch to a raltegravir-based regimen versus continuation of a lopinavir-ritonavir-based regimen in stable HIV-infected patients with suppressed viraemia (SWITCHMRK 1 and 2): two multicentre, double-blind, randomised controlled trials. Lancet. 2010;375(9712):396–407.

    Article  PubMed  CAS  Google Scholar 

  95. Klibanov OM. Elvitegravir, an oral HIV integrase inhibitor, for the potential treatment of HIV infection. Curr Opin Investig Drugs. 2009;10(2):190–200.

    PubMed  Google Scholar 

  96. Sato M, Motomura T, Aramaki H, Matsuda T, Yamashita M, Ito Y, et al. Novel HIV-1 integrase inhibitors derived from quinolone antibiotics. J Med Chem. 2006;49(5):1506–8.

    Article  PubMed  CAS  Google Scholar 

  97. Matsuzaki Y. JTK-303/GS 9137, a Novel Small-molecule Inhibitor of HIV-1 Integrase: Anti-HIV Activity Profile and Pharmacokinetics in Animals. in 13th Conference on Retroviruses and Opportunistic Infections. 2006. Denver, Colorado, USA.

  98. Annonymous. Single-tablet Quad regimen achieves high rate of virologic suppression. AIDS Patient Care STDS, 2010. 24(3): p. 197.

  99. Ramanathan S, Mathias AA, German P, Kearney BP. Clinical pharmacokinetic and pharmacodynamic profile of the HIV integrase inhibitor elvitegravir. Clin Pharmacokinet. 2011;50(4):229–44.

    Article  PubMed  CAS  Google Scholar 

  100. Mathias AA, West S, Hui J, Kearney BP. Dose-response of ritonavir on hepatic CYP3A activity and elvitegravir oral exposure. Clin Pharmacol Ther. 2009;85(1):64–70.

    Article  PubMed  CAS  Google Scholar 

  101. Isao K, Ishikawa T, Ishibashi M, Irie S, Kakee A, T. Japan Tobacco Inc., et al. Clinical Pharmacology Research Clinic, Japan. Safety and Pharmacokinetics of Single Oral Dose of JTK-303/GS-9137, a Novel HIV Integrase Inhibitor, in Healthy Volunteers. in 13th Conference on Retroviruses and Opportunistic Infections. 2006. Denver, Colorado, USA.

  102. Elion R, Gathe J, Rashburn B, et al. The single-tablet regimen elvitegravir/cobicstat/emtricitabine/tenofovir disoproxil fumarate (EVG/COBI/FTC/TDF; "QUAD") maintains a high rate of virologic supression, and cobicstat (COBI) is an effective pharmacoenhancer through 48 weeks. in 50th International Conference on Antimicrobial Agents and Chemotherapy. 2010. Boston, Ma, USA.

  103. Zolopa AR, Berger DS, Lampiris H, Zhong L, Chuck SL, Enejosa JV, et al. Activity of elvitegravir, a once-daily integrase inhibitor, against resistant HIV Type 1: results of a phase 2, randomized, controlled, dose-ranging clinical trial. J Infect Dis. 2010;201(6):814–22.

    Article  PubMed  CAS  Google Scholar 

  104. Goethals O, Clayton R, Van Ginderen M, Vereycken I, Wagemans E, Geluykens P, et al. Resistance mutations in human immunodeficiency virus type 1 integrase selected with elvitegravir confer reduced susceptibility to a wide range of integrase inhibitors. J Virol. 2008;82(21):10366–74.

    Article  PubMed  CAS  Google Scholar 

  105. Taiwo B, Zheng L, Gallien S, Matining RM, Kuritzkes DR, Wilson CC, et al. Efficacy of a Nucleoside-sparing Regimen of Darunavir/Ritonavir Plus Raltegravir in Treatment-Naïve HIV-1-infected Patients (ACTG A5262). AIDS, 2011.

  106. Métifiot M, Vandegraaff N, Maddali K, Naumova A, Zhang X, Rhodes D, et al. Elvitegravir overcomes resistance to raltegravir induced by integrase mutation Y143. AIDS. 2011;25(9):1175–8.

    Article  PubMed  CAS  Google Scholar 

  107. Shimura K, Kodama E, Sakagami Y, Matsuzaki Y, Watanabe W, Yamataka K, et al. Broad antiretroviral activity and resistance profile of the novel human immunodeficiency virus integrase inhibitor elvitegravir (JTK-303/GS-9137). J Virol. 2008;82(2):764–74.

    Article  PubMed  CAS  Google Scholar 

  108. Dicker IB, Terry B, Lin Z, Li Z, Bollini S, Samanta HK, et al. Biochemical analysis of HIV-1 integrase variants resistant to strand transfer inhibitors. J Biol Chem. 2008;283(35):23599–609.

    Article  PubMed  CAS  Google Scholar 

  109. McColl DJ, Fransen S, Gupta S, et al. Basic Principles and Clinical Implications, in XVI International HIV Drug Resistance Workshop. 2007.

  110. Canducci F, Sampaolo M, Marinozzi MC, Boeri E, Spagnuolo V, Galli A, et al. Dynamic patterns of human immunodeficiency virus type 1 integrase gene evolution in patients failing raltegravir-based salvage therapies. AIDS. 2009;23(4):455–60.

    Article  PubMed  CAS  Google Scholar 

  111. Al-Mawsawi LQ, Al-Safi RI, Neamati N. Anti-infectives: clinical progress of HIV-1 integrase inhibitors. Expert Opin Emerg Drugs. 2008;13(2):213–25.

    Article  PubMed  CAS  Google Scholar 

  112. Vacca J, Wai J, Fisher T, Embrey M, Hazuda D, Miller M, et al. Discovery of MK-2048 – subtle changes confer unique resistance properties to a series of tricyclic hydroxypyrrole integrase strand transfer inhibitor, in 4th International AIDS Society's Conference on HIV Pathogenesis, Treatment and Prevention. 2007: Sydney, Australia.

  113. Van Wesenbeeck L, Rondelez E, Feyaerts M, Verheyen A, Van der Borght K, Smits V, et al. Cross-resistance profile determination of two second-generation HIV-1 integrase inhibitors using a panel of recombinant viruses derived from raltegravir-treated clinical isolates. Antimicrob Agents Chemother. 2011;55(1):321–5.

    Article  PubMed  CAS  Google Scholar 

  114. Pandey KK, Bera S, Vora AC, Grandgenett DP. Physical trapping of HIV-1 synaptic complex by different structural classes of integrase strand transfer inhibitors. Biochemistry. 2010;49(38):8376–87.

    Article  PubMed  CAS  Google Scholar 

  115. Goethals O, Van Ginderen M, Vos A, Cummings MD, Van Der Borght K, Van Wesenbeeck L, et al. Resistance to raltegravir highlights integrase mutations at codon 148 in conferring cross-resistance to a second-generation HIV-1 integrase inhibitor. Antiviral Res. 2011;91(2):167–76.

    Article  PubMed  CAS  Google Scholar 

  116. Bar-Magen T, Sloan RD, Donahue DA, Kuhl BD, Zabeida A, Xu H, et al. Identification of novel mutations responsible for resistance to MK-2048, a second-generation HIV-1 integrase inhibitor. J Virol. 2010;84(18):9210–6.

    Article  PubMed  CAS  Google Scholar 

  117. Alcorn K. Raltegravir shows promise as a PREP drug. 2009 [cited 2011 27/08/2011]; Available from: http://www.aidsmap.com/Raltegravir-shows-potential-for-use-as-PrEP-drug/page/1434320/.

  118. Seegulam ME, Ratner L. Integrase inhibitors effective against human T-cell leukemia virus type 1. Antimicrob Agents Chemother. 2011;55(5):2011–7.

    Article  PubMed  CAS  Google Scholar 

  119. Eron J, Livrozet J, Mortal P, et al. Activity of integrase inhibitor S/GSK9572 in subjects with HIV exhibiting raltegravir resistance: week 24 results of VIKING Study, in 10th International Conference on Drug Therapy in HIV Infection. 2010: Glasgow, Scotland.

  120. Tomokazu Yoshinaga MK-K, Seki T, Ishida K, Akihisa E, Kobayashi M, Sato A, et al. Strong Inhibition of Wild-Type and Integrase Inhibitor (INI)-Resistant HIV Integrase (IN) Strand Transfer Reaction by the Novel INI S/GSK1349572, in International HIV & Hepatitis Virus Drug Resistance Workshop. 2010: Dubrovnik, Croatia.

  121. Bar-Magen T, Sloan RD, Faltenbacher VH, Donahue DA, Kuhl BD, Oliveira M, et al. Comparative biochemical analysis of HIV-1 subtype B and C integrase enzymes. Retrovirology. 2009;6:103.

    Article  PubMed  CAS  Google Scholar 

  122. Sloan RD, Wainberg MA. The role of unintegrated DNA in HIV infection. Retrovirology. 2011;8:52.

    Article  PubMed  CAS  Google Scholar 

  123. Seki T, Kobayashi, K, Wakasa-Morimoto C, Yoshinaga T, Sato A, Fujiwara T, et al. No Impact of HIV Integrase Polymorphisms at Position 101 and 124 on in vitro Resistance Isolation with Dolutegravir (DTG, S/GSK1349572), A Potent Next Generation HIV Integrase Inhibitor, in 17th International Conference on Retroviruses and Opportunistic Infections. 2010: San Francisco, California.

  124. Underwood M, Brian J, Sato A, et al. S/GSK1349572: A Next Generation Integrase Inhibitor with Activity Against Integrase Inhibitor-Resistant Clinical Isolates from Patients Experiencing Virologic Failure while on Raltegravir Therapy, in 5th International AIDS Society's Conference on HIV Pathogenesis. 2009.

  125. Kobayashi M, Yoshinaga T, Seki T, Wakasa-Morimoto C, Brown KW, Ferris R, et al. In Vitro antiretroviral properties of S/GSK1349572, a next-generation HIV integrase inhibitor. Antimicrob Agents Chemother. 2011;55(2):813–21.

    Article  PubMed  CAS  Google Scholar 

  126. Min S, Song I, Borland J, Chen S, Lou Y, Fujiwara T, et al. Pharmacokinetics and safety of S/GSK1349572, a next-generation HIV integrase inhibitor, in healthy volunteers. Antimicrob Agents Chemother. 2010;54(1):254–8.

    Article  PubMed  CAS  Google Scholar 

  127. Lalezari J, Sloan L, DeJesus E, Hawkins E, McCurdy L, Song I, et al. Potent Antiviral Activity of S/GSK1349572, A Next Generation Integrase Inhibitor (INI), in INI-Naïve HIV-1-Infected Patients: ING111521 Protocol, in 5th International AIDS Society's Conference on HIV Pathogenesis. 2009: Cape Town, South Africa.

  128. Min S, Sloan L, Dejesus E, Hawkins T, McCurdy L, Song I, et al. Antiviral activity, safety, and pharmacokinetics/pharmacodynamics of dolutegravir as 10-day monotherapy in HIV-1-infected adults. AIDS. 2011;25(14):1737–45.

    Article  PubMed  CAS  Google Scholar 

  129. Rockstroh J, Felizarta F, Maggiolo FF, Pulido F, Stellbrink HJ, Tsybakova O, et al. Once-daily S/GSK1349572 combination therapy in antiretroviral-naïve adults: rapid and potent 24-week antiviral responses in SPRING-1 (ING112276), in 10th International Conference on Drug Therapy in HIV Infection. 2010: Glasgow, Scotland.

  130. Jones G, Ledford R, Yu F, Miller M, Tsiang M, McColl D. Resistance profile of HIV-1 mutants in vitro selected by the HIV-1 integrase inhibitor, GS-9137 (JTK-303). . in 14th Conference on Retroviruses and Opportunistic Infections. 2007. Los Angeles, CA.

  131. Wainberg MA, Quashie PK, Han Y-S, Singhroy DN, Oliviera M, Moisi D, et al. Dolutegravir selects for R263K mutation in Subtype B and AG but not subtype C integrase enzymes. in 4th International Conference on Retroviral Integration. 2011. Siena, Italy.

  132. Hightower KE, Wang R, Deanda F, Johns BA, Weaver K, Shen Y, et al. Dolutegravir (S/GSK1349572) exhibits significantly slower dissociation than Raltegravir and Elvitegravir from wild-type and integrase inhibitor-resistant HIV-1 integrase-DNA complexes. Antimicrob Agents Chemother. 2011;55(10):4552–9.

    Article  PubMed  CAS  Google Scholar 

  133. Grobler JA, McKenna PM, Ly S, et al. Functionally irreversible inhibition of integration by slowly dissociating strand transfer inhibitors. in 10th International Conference on Clinical Pharmacology of HIV Therapy. 2009. Amsterdam, Netherlands.

  134. Garrido C, Soriano V, Geretti AM, Zahonero N, Garcia S, Booth C, et al. Resistance associated mutations to dolutegravir (S/GSK1349572) in HIV-infected patients - impact of HIV subtypes and prior raltegravir experience. Antiviral Res. 2011;90(3):164–7.

    Article  PubMed  CAS  Google Scholar 

  135. Malet I, Wirden M, Fourati S, Armenia D, Masquelier B, Fabeni L, et al. Prevalence of resistance mutations related to integrase inhibitor S/GSK1349572 in HIV-1 subtype B raltegravir-naive and -treated patients. J Antimicrob Chemother. 2011;66(7):1481–3.

    Article  PubMed  CAS  Google Scholar 

  136. O’Neal R. Dolutegravir: A new integrase inhibitor in development. 2011 [cited 2011 20/09/2011].

  137. Min S, DeJesus E, McCurdy L, et al. Early Studies Demonstrate Potent Activity and Safety of Experimental Integrase Inhibitor S/GSK1265744, in 49th Interscience Conference on Antimicrobials and Chemotherapy. 2009: San Francisco, USA.

  138. Cherepanov P. Integrase illuminated. EMBO Rep. 2010;11(5):328.

    Article  PubMed  CAS  Google Scholar 

  139. Hare S, Gupta SS, Valkov E, Engelman A, Cherepanov P. Retroviral intasome assembly and inhibition of DNA strand transfer. Nature. 2010;464(7286):232–6.

    Article  PubMed  CAS  Google Scholar 

  140. Hare S, Smith SJ, Métifiot M, Jaxa-Chamiec A, Pommier Y, Hughes SH, et al. Structural and functional analyses of the second-generation integrase strand transfer inhibitor Dolutegravir (S/GSK1349572). Mol Pharmacol. 2011;80(4):565–72.

    Article  PubMed  CAS  Google Scholar 

  141. Krishnan L, Li X, Naraharisetty HL, Hare S, Cherepanov P, Engelman A. Structure-based modeling of the functional HIV-1 intasome and its inhibition. Proc Natl Acad Sci U S A. 2010;107(36):15910–5.

    Article  PubMed  CAS  Google Scholar 

  142. Cherepanov P, Maertens GN, Hare S. Structural insights into the retroviral DNA integration apparatus. Curr Opin Struct Biol. 2011;21(2):249–56.

    Article  PubMed  CAS  Google Scholar 

  143. Hall LH. A structure-information approach to the prediction of biological activities and properties. Chem Biodivers. 2004;1(1):183–201.

    Article  PubMed  CAS  Google Scholar 

  144. Liao C, Nicklaus MC. Computer tools in the discovery of HIV-1 integrase inhibitors. Future Med Chem. 2010;2(7):1123–40.

    Article  PubMed  CAS  Google Scholar 

  145. Egbertson MS, Wai JS, Cameron M, Hoerrner RS. In: Kazmierski WM, editor. Discovery of MK-0536: A potential second-generation HIV-1 integrase strand transfer inhibitor with a high genetic barrier to mutation, in antiviral drugs: From basic discovery through clinical trials. Hoboken: Wiley; 2011.

    Google Scholar 

  146. Métifiot M, Johnson B, Smith S, Zhao XZ, Marchand C, Burke T, et al. MK-0536 inhibits HIV-1 integrases resistant to raltegravir. Antimicrob Agents Chemother, 2011.

  147. LLC, I., Terephthalamate compounds and compositions, and their use as HIV integrase inhibitors. 2007.

  148. Pace P, Di Francesco ME, Gardelli C, Harper S, Muraglia E, Nizi E, et al. Dihydroxypyrimidine-4-carboxamides as novel potent and selective HIV integrase inhibitors. J Med Chem. 2007;50(9):2225–39.

    Article  PubMed  CAS  Google Scholar 

  149. Muraglia E, Kinzel O, Gardelli C, Crescenzi B, Donghi M, Ferrara M, et al. Design and synthesis of bicyclic pyrimidinones as potent and orally bioavailable HIV-1 integrase inhibitors. J Med Chem. 2008;51(4):861–74.

    Article  PubMed  CAS  Google Scholar 

  150. Telvekar VN, Patel KN. Pharmacophore development and docking studies of the hiv-1 integrase inhibitors derived from N-methylpyrimidones, Dihydroxypyrimidines, and bicyclic pyrimidinones. Chem Biol Drug Des. 2011;78(1):150–60.

    Article  PubMed  CAS  Google Scholar 

  151. Johnson TW, Tanis SP, Butler SL, Dalvie D, Delisle DM, Dress KR, et al. Design and synthesis of novel N-hydroxy-dihydronaphthyridinones as potent and orally bioavailable HIV-1 integrase inhibitors. J Med Chem. 2011;54(9):3393–417.

    Article  PubMed  CAS  Google Scholar 

  152. Wai JS, Kim B, Fisher TE, Zhuang L, Embrey MW, Williams PD, et al. Dihydroxypyridopyrazine-1,6-dione HIV-1 integrase inhibitors. Bioorg Med Chem Lett. 2007;17(20):5595–9.

    Article  PubMed  CAS  Google Scholar 

  153. Toropova AP, Toropov AA, Benfenati E, Gini G. Simplified molecular input-line entry system and International Chemical Identifier in the QSAR analysis of styrylquinoline derivatives as HIV-1 integrase inhibitors. Chem Biol Drug Des. 2011;77(5):343–60.

    Article  PubMed  CAS  Google Scholar 

  154. Nagasawa JY, Song J, Chen H, Kim HW, Blazel J, Ouk S, et al. 6-Benzylamino 4-oxo-1,4-dihydro-1,8-naphthyridines and 4-oxo-1,4-dihydroquinolines as HIV integrase inhibitors. Bioorg Med Chem Lett. 2011;21(2):760–3.

    Article  PubMed  CAS  Google Scholar 

  155. Van Maele B, Busschots K, Vandekerckhove L, Christ F, Debyser Z. Cellular co-factors of HIV-1 integration. Trends Biochem Sci. 2006;31(2):98–105.

    Article  PubMed  CAS  Google Scholar 

  156. Sloan RD, Wainberg MA. The role of unintegrated DNA in HIV infection. Retrovirology. 2011;8:52.

    Article  PubMed  CAS  Google Scholar 

  157. Zamborlini A, Coiffic A, Beauclair G, Delelis O, Paris J, Koh Y, et al. Impairment of human immunodeficiency virus type-1 integrase SUMOylation correlates with an early replication defect. J Biol Chem. 2011;286(23):21013–22.

    Article  PubMed  CAS  Google Scholar 

  158. Terreni M, Valentini P, Liverani V, Gutierrez MI, Di Primio C, Di Fenza A, et al. GCN5-dependent acetylation of HIV-1 integrase enhances viral integration. Retrovirology. 2010;7:18.

    Article  PubMed  CAS  Google Scholar 

  159. Buzon MJ, Seiss K, Weiss R, Brass AL, Rosenberg ES, Pereyra F, et al. Inhibition of HIV-1 Integration in Ex Vivo-Infected CD4 T Cells from Elite Controllers. J Virol. 2011;85(18):9646–50.

    Article  PubMed  CAS  Google Scholar 

  160. Christ F, Voet A, Marchand A, Nicolet S, Desimmie BA, Marchand D, et al. Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat Chem Biol. 2010;6(6):442–8.

    Article  PubMed  CAS  Google Scholar 

  161. McNeely M, Hendrix J, Busschots K, Boons E, Deleersnijder A, Gerard M, et al. In vitro DNA tethering of HIV-1 integrase by the transcriptional coactivator LEDGF/p75. J Mol Biol. 2011;410(5):811–30.

    Article  PubMed  CAS  Google Scholar 

  162. De Luca L, Ferro S, Gitto R, Barreca ML, Agnello S, Christ F, et al. Small molecules targeting the interaction between HIV-1 integrase and LEDGF/p75 cofactor. Bioorg Med Chem. 2010;18(21):7515–21.

    Article  PubMed  CAS  Google Scholar 

  163. Madlala P, Gijsbers R, Christ F, Hombrouck A, Werner L, Mlisana K, et al. Association of polymorphisms in the LEDGF/p75 gene (PSIP1) with susceptibility to HIV-1 infection and disease progression. AIDS. 2011;25(14):1711–9.

    Article  PubMed  CAS  Google Scholar 

  164. Meehan AM, Saenz DT, Morrison J, Hu C, Peretz M, Poeschla EM. LEDGF dominant interference proteins demonstrate prenuclear exposure of HIV-1 integrase and synergize with LEDGF depletion to destroy viral infectivity. J Virol. 2011;85(7):3570–83.

    Article  PubMed  CAS  Google Scholar 

  165. De Luca L, Ferro S, Morreale F, Chimirri A. Inhibition of the interaction between HIV-1 integrase and its cofactor LEDGF/p75: a promising approach in anti-retroviral therapy. Mini Rev Med Chem. 2011;11(8):714–27.

    Article  PubMed  Google Scholar 

  166. De Luca L, Ferro S, Morreale F, De Grazia S, Chimirri A. Inhibitors of the interactions between HIV-1 IN and the cofactor LEDGF/p75. ChemMedChem. 2011;6(7):1184–91.

    Article  PubMed  CAS  Google Scholar 

  167. Fenwick C, Bethell R, Cordingley M, Edwards P, Quinson A-M, Robinson P, et al. BI 224436, a Non-Catalytic Site Integrase Inhibitor, is a potent inhibitor of the replication of treatment-naïve and raltegravir-resistant clinical isolates of HIV-1. in 51st Interscience Conference on Antimicrobials and Chemotherapy. 2011. Chicago, IL, USA.

  168. Aslanyan S, Ballow C, Sabo JP, Habeck J, Roos D, MacGregor TR, et al. Safety and pharmacokinetics (PK) of single rising oral doses of a novel HIV integrase inhibitor in healthy volunteers. in 51st Interscience Conference on Antimicrobials and Chemotherapy. 2011. Chicago, IL, USA

  169. Tang J, Maddali K, Dreis CD, Sham YY, Vince R, Pommier Y, et al. N-3 Hydroxylation of Pyrimidine-2,4-diones Yields Dual Inhibitors of HIV Reverse Transcriptase and Integrase. ACS Med Chem Lett. 2011;2(1):63–7.

    Article  PubMed  CAS  Google Scholar 

  170. Wang Z, Tang J, Salomon CE, Dreis CD, Vince R. Pharmacophore and structure-activity relationships of integrase inhibition within a dual inhibitor scaffold of HIV reverse transcriptase and integrase. Bioorg Med Chem. 2010;18(12):4202–11.

    Article  PubMed  CAS  Google Scholar 

  171. Di Santo R. Diketo acids derivatives as dual inhibitors of human immunodeficiency virus type 1 integrase and the reverse transcriptase RNase H domain. Curr Med Chem. 2011;18(22):3335–42.

    Article  PubMed  Google Scholar 

  172. Brenner BG, Lowe M, Moisi D, Hardy I, Gagnon S, Charest H, et al. Subtype diversity associated with the development of HIV-1 resistance to integrase inhibitors. J Med Virol. 2011;83(5):751–9.

    Article  PubMed  CAS  Google Scholar 

  173. Loizidou EZ, Kousiappa I, Zeinalipour-Yazdi CD, Van de Vijver DA, Kostrikis LG. Implications of HIV-1 M group polymorphisms on integrase inhibitor efficacy and resistance: genetic and structural in silico analyses. Biochemistry. 2009;48(1):4–6.

    Article  PubMed  CAS  Google Scholar 

  174. Malet I, Fourati S, Charpentier C, Morand-Joubert L, Armenia D, Wirden M, et al. The HIV-1 integrase G118R mutation confers raltegravir resistance to the CRF02_AG HIV-1 subtype. J Antimicrob Chemother, 2011.

  175. Dicker IB, Terry B, Lin Z, Li Z, Bollini S, Samanta HK, et al. Biochemical analysis of HIV-1 integrase variants resistant to strand transfer inhibitors. J Biol Chem. 2008;283(35):23599–609.

    Article  PubMed  CAS  Google Scholar 

  176. Hazuda DJ. Resistance to inhibitors of the human immunodeficiency virus type 1 integration. Braz J Infect Dis. 2010;14(5):513–8.

    PubMed  CAS  Google Scholar 

  177. Shafer RW. Rationale and uses of a public HIV drug-resistance database. J Infect Dis. 2006;194 Suppl 1:S51–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Canadian Institutes of Health Research (CIHR) and the Canadian Foundation for AIDS Research (CANFAR) and ISTP Canada for support. P.K.Q is a recipient of a CAHR/CIHR Doctoral Scholarship. T.M is the recipient of the BMS/CTN Postdoctoral Fellowship.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Wainberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quashie, P.K., Mesplède, T. & Wainberg, M.A. HIV Drug Resistance and the Advent of Integrase Inhibitors. Curr Infect Dis Rep 15, 85–100 (2013). https://doi.org/10.1007/s11908-012-0305-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-012-0305-1

Keywords

Navigation