Skip to main content
Log in

Are Results of Targeted Gene Sequencing Ready to Be Used for Clinical Decision Making for Patients with Acute Myelogenous Leukemia?

  • Acute Leukemias (F Ravandi, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Acute myeloid leukemia (AML) is the most common acute leukemia in the USA, which despite recent advances, continues to have a high mortality rate. It is a biologically active disease characterized by numerous cytogenetic abnormalities and multiple genetic mutations. Next-generation sequencing (NGS) will perhaps not reveal all the factors that make AML a complex disease, but does have the potential to affect the diagnosis and risk stratification of AML patients and allow more personalized therapy. AML cells are easy to obtain from the patient and samples are only minimally contaminated with normal cells, which makes it an attractive cancer to study. Several studies have now demonstrated that the majority of AML patients are cytogenetically normal and the genome of these patients may contain fewer mutations than cancer genomes that are highly aneuploidy, suggesting that mutations in diploid genomes are more likely to be pathogenetically relevant. Whole-genome, exome, transcriptome, and targeted gene sequencing studies have been conducted successfully in AML and have provided with valuable information. The challenges for the future include: reducing the cost of sequencing, understanding epigenetic changes, managing data across various platforms, separating the driver mutations from the sea of passenger mutations, and finally, educating future generations to allow a better understanding and easy availability of these complex methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Surveillance, Epidemiology, and End Results (SEER) Program Populations (1969–2009) (www.seer.cancer.gov/popdata), National Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistics Branch, January 2011.

  2. Marcucci G, Haferlach T, Döhner H. Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications. J Clin Oncol. 2011;29(5):475–86.

    Article  PubMed  CAS  Google Scholar 

  3. Tallman MS, Andersen JW, Schiffer CA, Appelbaum FR, Feusner JH, Ogden A, et al. All-trans-retinoic acid in acute promyelocytic leukemia. N Engl J Med. 1997;337(15):1021–8.

    Article  PubMed  CAS  Google Scholar 

  4. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.

    Article  PubMed  CAS  Google Scholar 

  5. Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD, Chen K, et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature. 2008;456(7218):66–72.

    Article  PubMed  CAS  Google Scholar 

  6. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361(11):1058–66.

    Article  PubMed  CAS  Google Scholar 

  7. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363(25):2424–33.

    Article  PubMed  CAS  Google Scholar 

  8. Link DC, Schuettpelz LG, Shen D, Wang J, Walter MJ, Kulkarni S, et al. Identification of a novel TP53 cancer susceptibility mutation through whole-genome sequencing of a patient with therapy-related AML. JAMA. 2011;305(15):1568–76.

    Article  PubMed  CAS  Google Scholar 

  9. Welch JS, Westervelt P, Ding L, Larson DE, Klco JM, Kulkarni S, et al. Use of whole-genome sequencing to diagnose a cryptic fusion oncogene. JAMA. 2011;305(15):1577–84.

    Article  PubMed  CAS  Google Scholar 

  10. Teer JK, Mullikin JC. Exome sequencing: the sweet spot before whole genomes. Hum Mol Genet. 2010;19(R2):R145–51.

    Article  PubMed  CAS  Google Scholar 

  11. Grossmann V, Tiacci E, Holmes AB, Kohlmann A, Martelli MP, Kern W, et al. Whole-exome sequencing identifies somatic mutations of BCOR in acute myeloid leukemia with normal karyotype. Blood. 2011;118:6153–63.

    Article  PubMed  CAS  Google Scholar 

  12. Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y, et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet. 2011;43(4):309–15.

    Article  PubMed  CAS  Google Scholar 

  13. Greif PA, Yaghmaie M, Konstandin NP, Ksienzyk B, Alimoghaddam K, Ghavamzadeh A, et al. Somatic mutations in acute promyelocytic leukemia (APL) identified by exome sequencing. Leukemia. 2011;25:1519–22.

    Article  PubMed  CAS  Google Scholar 

  14. Feng H, Qin Z, Zhang X. Opportunities and methods for studying alternative splicing in cancer with RNA-Seq. Cancer Lett. 2012. doi:10.1016/j.canlet.2012.11.010.

    Google Scholar 

  15. Greif PA, Eck SH, Konstandin NP, Benet-Pagès A, Ksienzyk B, Dufour A, et al. Identification of recurring tumor-specific somatic mutations in acute myeloid leukemia by transcriptome sequencing. Leukemia. 2011;25:821–7.

    Article  PubMed  CAS  Google Scholar 

  16. Ramsingh G, Koboldt DC, Trissal M, Chiappinelli KB, Wylie T, Koul S, et al. Complete characterization of the microRNAome in a patient with acute myeloid leukemia. Blood. 2010;116:5316–26.

    Article  PubMed  CAS  Google Scholar 

  17. Duncavage EJ, Abel HJ, Szankasi P, Kelley TW, Pfeifer JD. Targeted next generation sequencing of clinically significant gene mutations and translocations in leukemia. Mod Pathol. 2012;25(6):795–804.

    Article  PubMed  CAS  Google Scholar 

  18. Spencer DH, Abel HJ, Lockwood CM, Payton JE, Szankasi P, Kelley TW, et al. Detection of FLT3 internal tandem duplication in targeted, short-read-length, next-generation sequencing data. J Mol Diagn. 2013;15(1):81–93.

    Article  PubMed  CAS  Google Scholar 

  19. Walter MJ, Graubert TA, Dipersio JF, Mardis ER, Wilson RK, Ley TJ. Next-generation sequencing of cancer genomes: back to the future. Per Med. 2009;6(6):653.

    Article  PubMed  CAS  Google Scholar 

  20. Riva L, Luzi L, Pelicci PG. Genomics of acute myeloid leukemia: the next generation. Front Oncol. 2012;2:40.

    Article  PubMed  Google Scholar 

  21. Welch JS, Link DC. Genomics of AML: clinical applications of next-generation sequencing. Hematol Am Soc Hematol Educ Program. 2011;2011:30–5.

    Article  Google Scholar 

  22. Mardis ER, Wilson RK. Cancer genome sequencing: a review. Hum Mol Genet. 2009;18(R2):R163–8.

    Article  PubMed  CAS  Google Scholar 

  23. Mardis ER. A decade’s perspective on DNA sequencing technology. Nature. 2011;470(7333):198–203.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

Arati V. Rao declares that she has no conflict of interest. B. Douglas Smith declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arati V. Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, A.V., Smith, B.D. Are Results of Targeted Gene Sequencing Ready to Be Used for Clinical Decision Making for Patients with Acute Myelogenous Leukemia?. Curr Hematol Malig Rep 8, 149–155 (2013). https://doi.org/10.1007/s11899-013-0161-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-013-0161-6

Keywords

Navigation