Skip to main content

Advertisement

Log in

Cardiac Gene Therapy: From Concept to Reality

  • Pharmacologic Therapy (W. H. Wilson Tang, Section editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Heart failure is increasing in incidence throughout the world, especially in industrialized countries. Although the current therapeutic modalities have been successful in stabilizing the course of heart failure, morbidity and mortality remain quite high and there remains a great need for innovative breakthroughs that will offer new treatment strategies for patients with advanced forms of the disease. The past few years have witnessed a greater understanding of the molecular underpinnings of the failing heart, paving the way for novel strategies in modulating the cellular environment. As such, gene therapy has recently emerged as a powerful tool offering the promise of a new paradigm for alleviating heart failure. Current gene therapy research for heart failure is focused on exploring potential cellular targets and preclinical and clinical studies are ongoing toward the realization of this goal. Efforts also include the development of sophisticated viral vectors and vector delivery methods for efficient transduction of cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics–2011 update: a report from the American Heart Association. Circulation. 2011;123(4):e18–e209.

    Article  PubMed  Google Scholar 

  2. Lloyd-Jones D, Adams RJ, Brown TM, et al. Executive summary: heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation. 2010;121(7):948–54.

    Article  PubMed  Google Scholar 

  3. Bers DM. Calcium fluxes involved in control of cardiac myocyte contraction. Circ Res. 2000;87(4):275–81.

    PubMed  CAS  Google Scholar 

  4. Katz AM, Lorell BH. Regulation of cardiac contraction and relaxation. Circulation. 2000;102(20 Suppl 4):IV69–74.

    PubMed  CAS  Google Scholar 

  5. Nicolaou P, Rodriguez P, Ren X, et al. Inducible expression of active protein phosphatase-1 inhibitor-1 enhances basal cardiac function and protects against ischemia/reperfusion injury. Circ Res. 2009;104(8):1012–20.

    Article  PubMed  CAS  Google Scholar 

  6. •• Nicolaou P, Hajjar RJ, Kranias EG. Role of protein phosphatase-1 inhibitor-1 in cardiac physiology and pathophysiology. J Mol Cell Cardiol. 2009;47(3):365–71. This is a comprehensive review article discussing the role of protein phosphatase-1 inhibitor-1 (I-1) in heart failure. It also discusses the effects of differential phosphorylation of I-1.

    Article  PubMed  CAS  Google Scholar 

  7. Dhalla NS, Saini-Chohan HK, Rodriguez-Leyva D, et al. Subcellular remodelling may induce cardiac dysfunction in congestive heart failure. Cardiovasc Res. 2009;81(3):429–38.

    Article  PubMed  CAS  Google Scholar 

  8. Gwathmey JK, Copelas L, MacKinnon R, et al. Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res. 1987;61(1):70–6.

    PubMed  CAS  Google Scholar 

  9. Schmidt U, Hajjar RJ, Helm PA, et al. Contribution of abnormal sarcoplasmic reticulum ATPase activity to systolic and diastolic dysfunction in human heart failure. J Mol Cell Cardiol. 1998;30(10):1929–37.

    Article  PubMed  CAS  Google Scholar 

  10. Hajjar RJ, Zsebo K, Deckelbaum L, et al. Design of a phase 1/2 trial of intracoronary administration of AAV1/SERCA2a in patients with heart failure. J Card Fail. 2008;14(5):355–67.

    Article  PubMed  CAS  Google Scholar 

  11. Kaye DM, Preovolos A, Marshall T, et al. Percutaneous cardiac recirculation-mediated gene transfer of an inhibitory phospholamban peptide reverses advanced heart failure in large animals. J Am Coll Cardiol. 2007;50(3):253–60.

    Article  PubMed  CAS  Google Scholar 

  12. Haghighi K, Kolokathis F, Pater L, et al. Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J Clin Invest. 2003;111(6):869–76.

    PubMed  CAS  Google Scholar 

  13. El-Armouche A, Pamminger T, Ditz D, et al. Decreased protein and phosphorylation level of the protein phosphatase inhibitor-1 in failing human hearts. Cardiovasc Res. 2004;61(1):87–93.

    Article  PubMed  CAS  Google Scholar 

  14. Pathak A, del Monte F, Zhao W, et al. Enhancement of cardiac function and suppression of heart failure progression by inhibition of protein phosphatase 1. Circ Res. 2005;96(7):756–66.

    Article  PubMed  CAS  Google Scholar 

  15. Rohde D, Ritterhoff J, Voelkers M, et al. S100A1: a multifaceted therapeutic target in cardiovascular disease. J Cardiovasc Transl Res. 2010;3(5):525–37.

    Article  PubMed  Google Scholar 

  16. Maurice JP, Hata JA, Shah AS, et al. Enhancement of cardiac function after adenoviral-mediated in vivo intracoronary beta2-adrenergic receptor gene delivery. J Clin Invest. 1999;104(1):21–9.

    Article  PubMed  CAS  Google Scholar 

  17. Shah AS, Lilly RE, Kypson AP, et al. Intracoronary adenovirus-mediated delivery and overexpression of the beta(2)-adrenergic receptor in the heart: prospects for molecular ventricular assistance. Circulation. 2000;101(4):408–14.

    PubMed  CAS  Google Scholar 

  18. Shah AS, White DC, Emani S, et al. In vivo ventricular gene delivery of a beta-adrenergic receptor kinase inhibitor to the failing heart reverses cardiac dysfunction. Circulation. 2001;103(9):1311–6.

    PubMed  CAS  Google Scholar 

  19. Lai NC, Tang T, Gao MH, et al. Activation of cardiac adenylyl cyclase expression increases function of the failing ischemic heart in mice. J Am Coll Cardiol. 2008;51(15):1490–7.

    Article  PubMed  CAS  Google Scholar 

  20. Chatterjee S, Stewart AS, Bish LT, et al. Viral gene transfer of the antiapoptotic factor Bcl-2 protects against chronic postischemic heart failure. Circulation. 2002;106(12 Suppl 1):I212–7.

    PubMed  Google Scholar 

  21. Communal C, Singh K, Sawyer DB, Colucci WS. Opposing effects of beta(1)- and beta(2)-adrenergic receptors on cardiac myocyte apoptosis: role of a pertussis toxin-sensitive G protein. Circulation. 1999;100(22):2210–2.

    PubMed  CAS  Google Scholar 

  22. Most P, Boerries M, Eicher C, et al. Extracellular S100A1 protein inhibits apoptosis in ventricular cardiomyocytes via activation of the extracellular signal-regulated protein kinase 1/2 (ERK1/2). J Biol Chem. 2003;278(48):48404–12.

    Article  PubMed  CAS  Google Scholar 

  23. Felgner PL. Nonviral strategies for gene therapy. Sci Am. 1997;276(6):102–6.

    Article  PubMed  CAS  Google Scholar 

  24. Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med. 2001;7(1):33–40.

    Article  PubMed  CAS  Google Scholar 

  25. Isner JM. Myocardial gene therapy. Nature. 2002;415(6868):234–9.

    Article  PubMed  CAS  Google Scholar 

  26. Klages N, Zufferey R, Trono D. A stable system for the high-titer production of multiply attenuated lentiviral vectors. Mol Ther. 2000;2(2):170–6.

    Article  PubMed  CAS  Google Scholar 

  27. Galimi F, Noll M, Kanazawa Y, et al. Gene therapy of fanconi anemia: preclinical efficacy using lentiviral vectors. Blood. 2002;100(8):2732–6.

    Article  PubMed  CAS  Google Scholar 

  28. Galimi F, Verma IM. Opportunities for the use of lentiviral vectors in human gene therapy. Curr Top Microbiol Immunol. 2002;261:245–54.

    Article  PubMed  CAS  Google Scholar 

  29. Srivastava A, Lusby EW, Berns KI. Nucleotide sequence and organization of the adeno-associated virus 2 genome. J Virol. 1983;45(2):555–64.

    PubMed  CAS  Google Scholar 

  30. Kyostio SR, Owens RA, Weitzman MD, et al. Analysis of adeno-associated virus (AAV) wild-type and mutant Rep proteins for their abilities to negatively regulate AAV p5 and p19 mRNA levels. J Virol. 1994;68(5):2947–57.

    PubMed  CAS  Google Scholar 

  31. Carter PJ, Samulski RJ. Adeno-associated viral vectors as gene delivery vehicles. Int J Mol Med. 2000;6(1):17–27.

    PubMed  CAS  Google Scholar 

  32. Carter BJ. Adeno-associated virus vectors in clinical trials. Hum Gene Ther. 2005;16(5):541–50.

    Article  PubMed  CAS  Google Scholar 

  33. Flotte TR. Adeno-associated virus-based gene therapy for inherited disorders. Pediatr Res. 2005;58(6):1143–7.

    Article  PubMed  CAS  Google Scholar 

  34. Michelfelder S, Lee MK, de Lima-Hahn E, et al. Vectors selected from adeno-associated viral display peptide libraries for leukemia cell-targeted cytotoxic gene therapy. Exp Hematol. 2007;35(12):1766–76.

    Article  PubMed  CAS  Google Scholar 

  35. •• Wang J, Faust SM, Rabinowitz JE. The next step in gene delivery: molecular engineering of adeno-associated virus serotypes. J Mol Cell Cardiol. 2011;50(5):793–802. This article reviews the future direction of AAV construction, discussing different methods for engineering viruses exclusive for the desired organ or tissue.

    Article  PubMed  CAS  Google Scholar 

  36. Hajjar RJ, Schmidt U, Matsui T, et al. Modulation of ventricular function through gene transfer in vivo. Proc Natl Acad Sci U S A. 1998;95(9):5251–6.

    Article  PubMed  CAS  Google Scholar 

  37. Fromes Y, Salmon A, Wang X, et al. Gene delivery to the myocardium by intrapericardial injection. Gene Ther. 1999;6(4):683–8.

    Article  PubMed  CAS  Google Scholar 

  38. Bridges CR, Gopal K, Holt DE, et al. Efficient myocyte gene delivery with complete cardiac surgical isolation in situ. J Thorac Cardiovasc Surg. 2005;130(5):1364.

    Article  PubMed  Google Scholar 

  39. Koransky ML, Robbins RC, Blau HM. VEGF gene delivery for treatment of ischemic cardiovascular disease. Trends Cardiovasc Med. 2002;12(3):108–14.

    Article  PubMed  CAS  Google Scholar 

  40. Boekstegers P, von Degenfeld G, Giehrl W, et al. Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins. Gene Ther. 2000;7(3):232–40.

    Article  PubMed  CAS  Google Scholar 

  41. • Calcedo R, Vandenberghe LH, Gao G, et al. Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J Infect Dis. 2009;199(3):381–90. This article addresses the prevalence of adeno-associated virus antibodies in different world populations.

    Article  PubMed  Google Scholar 

  42. Boutin S, Monteilhet V, Veron P, et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther. 2010;21(6):704–12.

    Article  PubMed  CAS  Google Scholar 

  43. Mingozzi F, Meulenberg JJ, Hui DJ, et al. AAV-1-mediated gene transfer to skeletal muscle in humans results in dose-dependent activation of capsid-specific T cells. Blood. 2009;114(10):2077–86.

    Article  PubMed  CAS  Google Scholar 

  44. Brockstedt DG, Podsakoff GM, Fong L, et al. Induction of immunity to antigens expressed by recombinant adeno-associated virus depends on the route of administration. Clin Immunol. 1999;92(1):67–75.

    Article  PubMed  CAS  Google Scholar 

  45. Mingozzi F, Liu YL, Dobrzynski E, et al. Induction of immune tolerance to coagulation factor IX antigen by in vivo hepatic gene transfer. J Clin Invest. 2003;111(9):1347–56.

    PubMed  CAS  Google Scholar 

  46. Donahue JK, Sasano T, Kelemen K. Gene therapy approaches to ventricular tachyarrhythmias. J Electrocardiol. 2007;40(6 Suppl):S187–91.

    Article  PubMed  Google Scholar 

  47. Gregorevic P, Blankinship MJ, Allen JM, et al. Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med. 2004;10(8):828–34.

    Article  PubMed  CAS  Google Scholar 

  48. Jaski BE, Jessup ML, Mancini DM, et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial), a first-in-human phase 1/2 clinical trial. J Card Fail. 2009;15(3):171–81.

    Article  PubMed  CAS  Google Scholar 

  49. •• Jessup M, Greenberg B, Mancini D, et al. Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+−ATPase in patients with advanced heart failure. Circulation. 2011. This article discusses the results of phase 2 of the CUPID clinical trial in patients with severe heart failure.

Download references

Disclosures

R.G. Kratlian: none. Roger J. Hajjar is a scientific founder of Celladon Inc., which is developing AAV1.SERCA2a for the treatment of heart failure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger J. Hajjar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kratlian, R.G., Hajjar, R.J. Cardiac Gene Therapy: From Concept to Reality. Curr Heart Fail Rep 9, 33–39 (2012). https://doi.org/10.1007/s11897-011-0077-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-011-0077-1

Keywords

Navigation