Skip to main content

Advertisement

Log in

Immune Intervention in Children with Type 1 Diabetes

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Not only T cells but also B cells play a role in the autoimmune process. Both monoclonal antiCD3 and antiCD20 antibodies seem efficacious. However, such treatments need to be refined to minimize adverse events. Use of autoantigens to create tolerance is a concept with great potential. GAD65 treatment has shown efficacy without adverse events thus far, and administration of the insulin B chain shows interesting immunologic effects. Other more or less speculative approaches to modulate the immune process need further studies with good design. Risks that are too serious cannot be motivated. In addition, as the β cells may die even though the autoimmune process is stopped, protective measures may be valuable (eg, active insulin treatment, and perhaps interleukin-1 receptor antagonists to reduce the nonautoimmune inflammation). Combination of immune intervention, protection of the β cells, and stimulation of regeneration may lead to a milder disease or even a cure in the future, and prevention is no longer unrealistic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group [no authors listed]. N Engl J Med 1993, 329:977–986.

  2. Bojestig M, Arnqvist HJ, Hermansson G, et al.: Declining incidence of nephropathy in insulin-dependent diabetes mellitus. N Engl J Med 1994, 330:15–18.

    Article  PubMed  CAS  Google Scholar 

  3. Madsbad S, Alberti KG, Binder C, et al.: Role of residual insulin secretion in protecting against ketoacidosis in insulin-dependent diabetes. Br Med J 1979, 2:1257–1259.

    Article  PubMed  CAS  Google Scholar 

  4. Steffes MW, Sibley S, Jackson M, Thomas W: Beta-cell function and the development of diabetes-related complications in the Diabetes Control and Complications Trial. Diabetes Care 2003, 26:832–836.

    Article  PubMed  Google Scholar 

  5. Wahren J, Ekberg K, Jörnvall H: C-peptide is a bioactive peptide. Diabetologia 2007, 50:503–509.

    CAS  Google Scholar 

  6. Meier JJ, Lin JC, Butler AE, et al.: Direct evidence of attempted beta cell regeneration in an 89-year-old patient with recent-onset type 1 diabetes. Diabetologia 2006, 49:1838–1844.

    Article  PubMed  CAS  Google Scholar 

  7. Butler PC, Meier JJ, Butler AE, Bhushan A: The replication of beta cells in normal physiology, in disease and for therapy. Nat Clin Pract Endocrinol Metab 2007, 3:758–768.

    Article  PubMed  CAS  Google Scholar 

  8. Atkinson MA, Eisenbarth GS: Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet 2001, 358:221–229.

    Article  PubMed  CAS  Google Scholar 

  9. Ludvigsson J, Heding L, Lieden G, et al.: Plasmapheresis in the initial treatment of insulin-dependent diabetes mellitus in children. Br Med J (Clin Res Ed) 1983, 286:176–178.

    Article  CAS  Google Scholar 

  10. Stiller CR, Dupré J, Gent M, et al.: Effects of cyclosporine immunosuppression in insulin-dependent diabetes mellitus of recent onset. Science 1984, 223:1362–1367.

    Article  PubMed  CAS  Google Scholar 

  11. Eisenbarth GS, Srikanta S, Jackson R, et al.: Anti-thymocyte globulin and prednisone immunotherapy of recent onset type 1 diabetes mellitus. Diabetes Res 1985, 2:271–276.

    PubMed  CAS  Google Scholar 

  12. Chase HP, Butler-Simon N, Garg S, et al.: A trial of nicotinamide in newly diagnosed patients with type 1 (insulin-dependent) diabetes mellitus. Diabetologia 1990, 33:444–446.

    Article  PubMed  CAS  Google Scholar 

  13. Pozzilli P, Visalli N, Signore A, et al.: Double blind trial of nicotinamide in recent-onset IDDM (the IMDIAB III study). Diabetologia 1995, 38:848–852.

    Article  PubMed  CAS  Google Scholar 

  14. Coutant R, Landais P, Rosilio M, et al.: Low dose linomide in type I juvenile diabetes of recent onset: a randomised placebo-controlled double blind trial. Diabetologia 1998, 41:1040–1046.

    Article  PubMed  CAS  Google Scholar 

  15. Ludvigsson J, Samuelsson U, Johansson C, Stenhammar L: Treatment with antioxidants at onset of type 1 diabetes in children: a randomized, double-blind placebo-controlled study. Diabetes Metab Res Rev 2001, 17:131–136.

    Article  PubMed  CAS  Google Scholar 

  16. Ludvigsson J, Samuelsson U, Ernerudh J, et al.: Photopheresis at onset of type 1 diabetes: a randomised, double blind, placebo controlled trial. Arch Dis Child 2001, 85:149–154.

    Article  PubMed  CAS  Google Scholar 

  17. Raz I, Elias D, Avron A, et al.: Beta-cell function in new-onset type 1 diabetes and immunomodulation with a heat-shock protein peptide (DiaPep277): a randomised, double-blind, phase II trial. Lancet 2001, 358:1749–1753.

    Article  PubMed  CAS  Google Scholar 

  18. Herold KC, Gitelman SE, Masharani U, et al.: A single course of anti-CD3 monoclonal antibody hOKT3gamma1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes 2005, 54:1763–1769.

    Article  PubMed  CAS  Google Scholar 

  19. Keymeulen B, Vandemeulebroucke E, Ziegler AG, et al.: Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med 2005, 352:2598–2608.

    Article  PubMed  CAS  Google Scholar 

  20. Agardh CD, Cilio CM, Lethagen A, et al.: Clinical evidence for the safety of GAD65 immunomodulation in adult-onset autoimmune diabetes. J Diabetes Complications 2005, 19:238–246.

    Article  PubMed  Google Scholar 

  21. •• Larsen CM, Faulenbach M, Vaag A, et al.: Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 2007, 356:1517–1526. This paper describes the importance of reducing the nonautoimmune inflammation, which may be important not only in type 2 diabetes (as in this study) but also in type 1 diabetes.

    Article  PubMed  CAS  Google Scholar 

  22. •• Ludvigsson J, Faresjö M, Hjorth M, et al.: GAD treatment and insulin secretion in recent-onset type 1 diabetes. N Engl J Med 2008, 359:1909–1920. This study is the first showing an effect of autoantigen treatment to reduce the autoimmune process and preserve residual C-peptide and insulin secretion.

    Article  PubMed  CAS  Google Scholar 

  23. • Keymeulen B, Walter M, Mathieu C, et al.: Four-year metabolic outcome of a randomised controlled CD-3-antibody trial in recent-onset type 1 diabetic patients depends on their age and baseline residual beta cell mass. Diabetologia 2010, 53:614–623. This study shows that antiCD3 treatment may have long-standing effect on preservation of residual insulin secretion, especially in those with β-cell function at treatment.

    Article  PubMed  CAS  Google Scholar 

  24. •• Herold KC, Gitelman S, Greenbaum C, et al.: Treatment of patients with new onset type 1 diabetes with a single course of anti-CD3 mAb Teplizumab preserves insulin production for up to 5 years. Clin Immunol 2009, 132:166–173. This study not only shows that antiCD3 treatment may have a long-standing effect, but it illustrates that this type of treatment may be quite dangerous, unless we learn more about how to use the treatment.

    Article  PubMed  CAS  Google Scholar 

  25. Effect of intensive therapy on residual beta-cell function in patients with type 1 diabetes in the diabetes control and complications trial. A randomized, controlled trial. The Diabetes Control and Complications Trial Research Group [no authors listed]. Ann Intern Med 1998, 128:517–523.

  26. •• Pescovitz MD, Greenbaum CJ, Krause-Steinrauf H, et al.: Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N Engl J Med 2009, 361:2143–2152. This study proves that not only T cells but also B cells are important in the autoimmune process leading to type 1 diabetes.

    Article  PubMed  CAS  Google Scholar 

  27. Ryan C, Thrash B, Warren RB, Menter A: The use of ustekinumab in autoimmune disease. Expert Opin Biol Ther 2010, 10:587–604.

    Article  PubMed  CAS  Google Scholar 

  28. •• Gottlieb PA, Quinlan S, Krause-Steinrauf H, et al.: Failure to preserve beta-cell function with mycophenolate mofetil and daclizumab combined therapy in patients with new- onset type 1 diabetes. Diabetes Care 2010, 33:826–832. Combination therapies should be tried, but too intense immune suppression may cause unacceptable adverse events, and may also weaken rather than improve efficacy.

    Article  PubMed  CAS  Google Scholar 

  29. • Mastrandrea L, Yu J, Behrens T, et al.: Etanercept treatment in children with new-onset type 1 diabetes: pilot randomized, placebo-controlled, double-blind study. Diabetes Care 2009, 32:1244–1249. This study shows that blocking the effect of TNF-α also may be useful in type 1 diabetes.

    Article  PubMed  CAS  Google Scholar 

  30. Mandrup-Poulsen T, Pickersgill L, Donath M: Blockade of interleukin 1 in type 1 diabetes mellitus. Nat Rev Endocrinol 2010, 6:158–166.

    Article  PubMed  CAS  Google Scholar 

  31. Couri CE, Oliveira MC, Stracieri AB, et al.: C-peptide levels and insulin independence following autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA 2009, 301:1573–1579.

    Article  PubMed  CAS  Google Scholar 

  32. Ludvigsson J: Immune intervention at diagnosis--should we treat children to preserve beta-cell function? Pediatr Diabetes 2007, 8(Suppl 6):34–39.

    Article  PubMed  Google Scholar 

  33. Coutant R, Landais P, Rosilio M, et al.: Low dose linomide in type I juvenile diabetes of recent onset: a randomised placebo-controlled double blind trial. Diabetologia 1998, 41:1040–1046.

    Article  PubMed  CAS  Google Scholar 

  34. Rother KI, Brown RJ, Morales MM, et al.: Effect of ingested interferon-alpha on beta-cell function in children with new-onset type 1 diabetes. Diabetes Care 2009, 32:1250–1255.

    Article  PubMed  CAS  Google Scholar 

  35. Haller MJ, Wasserfall CH, McGrail KM, et al. Autologous umbilical cord blood transfusion in very young children with type 1 diabetes. Diabetes Care 2009, 32:2041–2046.

    Article  PubMed  Google Scholar 

  36. Elias D, Markovits D, Reshef T, et al.: Induction and therapy of autoimmune diabetes in the non-obese diabetic (NOD/Lt) mouse by a 65-kDa heat shock protein. Proc Natl Acad Sci U S A 1990, 87:1576–1580.

    Article  PubMed  CAS  Google Scholar 

  37. Schloot NC, Meierhoff G, Lengyel C, et al.: Effect of heat shock protein peptide DiaPep277 on beta-cell function in paediatric and adult patients with recent-onset diabetes mellitus type 1: two prospective, randomized, double-blind phase II trials. Diabetes Metab Res Rev 2007, 23:276–285.

    Article  PubMed  CAS  Google Scholar 

  38. Pfleger C, Meierhoff G, Kolb H, Schloot NC: Association of T-cell reactivity with beta-cell function in recent onset type 1 diabetes patients. J Autoimmun 2010, 34:127–135.

    Article  PubMed  CAS  Google Scholar 

  39. Eldor R, Kassem S, Raz I: Immune modulation in type 1 diabetes mellitus using DiaPep277: a short review and update of recent clinical trial results. Diabetes Metab Res Rev 2009, 25:316–320.

    Article  PubMed  CAS  Google Scholar 

  40. Ludvigsson J: Adequate doses of autoantigen administered using the appropriate route may create tolerance and stop autoimmunity. Diabetologia 2009, 52:175–176.

    Article  PubMed  CAS  Google Scholar 

  41. Sosenko JM, Palmer JP, Rafkin-Mervis L, et al.: Incident dysglycemia and progression to type 1 diabetes among participants in the Diabetes Prevention Trial-Type 1. Diabetes Care 2009, 32:1603–1607.

    Article  PubMed  Google Scholar 

  42. Skyler JS, Krischer JP, Wolfsdorf J, et al.: Effects of oral insulin in relatives of patients with type 1 diabetes: The Diabetes Prevention Trial--Type 1. Diabetes Care 2005, 28:1068–1076.

    Article  PubMed  CAS  Google Scholar 

  43. • Näntö-Salonen K, Kupila A, Simell S, et al.: Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial. Lancet 2008, 372:1746–1755. This study showed that intranasal presentation of the autoantigen insulin did not prevent diabetes in high-risk children.

    Article  PubMed  CAS  Google Scholar 

  44. •• Orban T, Farkas K, Jalahej H, et al.: Autoantigen-specific regulatory T cells induced in patients with type 1 diabetes mellitus by insulin B-chain immunotherapy. J Autoimmun 2010, 34:408–415. Use of autoantigens may be a way to modulate the immune process and increase T-cell regulation and tolerance.

    Article  PubMed  CAS  Google Scholar 

  45. Agardh CD, Lynch KF, Palmér M, et al.: GAD65 vaccination: 5 years of follow-up in a randomised dose-escalating study in adult-onset autoimmune diabetes. Diabetologia 2009, 52:1363–1368.

    Article  PubMed  CAS  Google Scholar 

  46. Gale EA, Bingley PJ, Emmett CL, Collier T: European Nicotinamide Diabetes Intervention Trial (ENDIT): a randomised controlled trial of intervention before the onset of type 1 diabetes. Lancet 2004, 363:925–931.

    Article  PubMed  CAS  Google Scholar 

  47. Ortqvist E, Björk E, Wallensteen M, et al.: Temporary preservation of beta-cell function by diazoxide treatment in childhood type 1 diabetes. Diabetes Care 2004, 27:2191–2197.

    Article  PubMed  CAS  Google Scholar 

  48. Radtke MA, Nermoen I, Kollind M, et al.: Six months of diazoxide treatment at bedtime in newly diagnosed subjects with type 1 diabetes does not influence parameters of {beta}-cell function and autoimmunity but improves glycemic control. Diabetes Care 2010, 33:589–594.

    Article  PubMed  CAS  Google Scholar 

  49. Mathieu C, Badenhoop K: Vitamin D and type 1 diabetes mellitus: state of the art. Trends Endocrinol Metab 2005, 16:261–266.

    Article  PubMed  CAS  Google Scholar 

  50. Walter M, Kaupper T, Adler K, et al.: No effect of the 1alpha, 25-dihydroxyvitamin D3 on beta-cell residual function and insulin requirement in adults with new-onset type 1 diabetes. Diabetes Care 2010, 33:1443–1448.

    Article  PubMed  CAS  Google Scholar 

  51. Nielsen JH, Galsgaard ED, Møldrup A, et al.: Regulation of beta-cell mass by hormones and growth factors. Diabetes 2001, 50(Suppl 1):S25–S29.

    Article  PubMed  CAS  Google Scholar 

  52. Rother KI, Spain LM, Wesley RA, et al.: Effects of exenatide alone and in combination with daclizumab on beta-cell function in long-standing type 1 diabetes. Diabetes Care 2009, 32:2251–2257.

    Article  PubMed  CAS  Google Scholar 

  53. Dungan KM, Buse JB, Ratner RE: Effects of therapy in type 1 and type 2 diabetes mellitus with a peptide derived from islet neogenesis associated protein (INGAP). Diabetes Metab Res Rev 2009, 25:558–565.

    Article  PubMed  CAS  Google Scholar 

  54. Nordwall M, Ludvigsson J: Clinical manifestations and beta cell function in Swedish diabetic children have remained unchanged during the last 25 years. Diabetes Metab Res Rev 2008, 24:472–479.

    Article  PubMed  CAS  Google Scholar 

  55. Ludvigsson J, Heding LG, Larsson Y, Leander E: C-peptide in juvenile diabetics beyond the postinitial remission period. Relation to clinical manifestations at onset of diabetes, remission and diabetic control. Acta Paediatr Scand 1977, 66:177–184.

    Article  PubMed  CAS  Google Scholar 

  56. Ludvigsson J: C-peptide an adequate endpoint in type 1 diabetes. Diabetes Metab Res Rev 2009, 25:691–693.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Some immune intervention studies mentioned above, performed in Linköping, have been supported by the Swedish Child Diabetes Foundation (Barndiabetesfonden), the Swedish Research Council, the County Council of Östergötland, and the Regional Research Council (FORSS). A number of dedicated biomedical technicians and diabetes research nurses, as well as pediatricians, should be acknowledged.

Disclosure

Diamyd Medical has been/is a sponsor for the phase 2/3 trials (with Johnny Ludvigsson as PI) and has also given financial support for the investigator-initiated mechanistic studies led by Johnny Ludvigsson. Diamyd Medical AB was involved in the planning of the phase 2 study, but thereafter, this study was performed completely free from the influence of funding sources, and the same is true for the phase 3 trials. Investigators had free access to the raw data and could publish without sponsor consent. Johnny Ludvigsson has also been advisor to both GlaxoSmithKline and Johnson & Johnson regarding use of mAbs.

The Linköping Diabetes Immune Intervention study group

This study group included the following: Johnny Ludvigsson, Rosaura Casas, Stina Axelsson, Mikael Chéramy, Maria Hjorth, and Mikael Pihl.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Johnny Ludvigsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ludvigsson, J., for The Linköping Diabetes Immune Intervention study group. Immune Intervention in Children with Type 1 Diabetes. Curr Diab Rep 10, 370–379 (2010). https://doi.org/10.1007/s11892-010-0138-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-010-0138-y

Keywords

Navigation