Skip to main content
Log in

Increased plasma levels of plant sterols and atherosclerosis: A controversial issue

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

A number of studies have raised the possibility of circulating plant sterols being a risk factor in the pathogenesis of atherosclerosis. Evidence in support of this hypothesis comes mainly from observations in sitosterolemic patients, who hyperabsorb plant sterols and suffer premature atherosclerosis. Accordingly, the atherogenicity of plant sterols of dietary origin is currently under debate, in view of the widespread use of cholesterol-lowering functional foods enriched with these compounds. Although some reports have suggested the vascular perils of small increases in plasma plant sterol concentrations, other prospective and large population-based studies have indicated otherwise. Further, the potential risk of plant sterol-enriched foods may be counterbalanced by the notable reduction in plasma cholesterol. This review summarizes the current evidence on the possible impact of plant sterols as a risk factor for atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Rader DJ, Daugherty A: Translating molecular discoveries into new therapies for atherosclerosis. Nature 2008, 451:904–913.

    Article  PubMed  CAS  Google Scholar 

  2. Levy E, Spahis S, Sinnett D, et al.: Intestinal cholesterol transport proteins: an update and beyond. Curr Opin Lipidol 2007, 18:310–318.

    Article  PubMed  CAS  Google Scholar 

  3. Patel MD, Thompson PD: Phytosterols and vascular disease. Atherosclerosis 2006, 186:12–19.

    Article  PubMed  CAS  Google Scholar 

  4. Calpe-Berdiel L, Escola-Gil JC, Blanco-Vaca F: New insights into the molecular actions of plant sterols and stanols in cholesterol metabolism. Atherosclerosis 2009, 203:18–31.

    Article  PubMed  CAS  Google Scholar 

  5. Berge KE, von Bergmann K, Lutjohann D, et al.: Heritability of plasma noncholesterol sterols and relationship to DNA sequence polymorphism in ABCG5 and ABCG8. J Lipid Res 2002, 43:486–494.

    PubMed  CAS  Google Scholar 

  6. Chan YM, Varady KA, Lin Y, et al.: Plasma concentrations of plant sterols: physiology and relationship with coronary heart disease. Nutr Rev 2006, 64:385–402.

    Article  PubMed  Google Scholar 

  7. Calpe-Berdiel L, Escola-Gil JC, Ribas V, et al.: Changes in intestinal and liver global gene expression in response to a phytosterol-enriched diet. Atherosclerosis 2005, 181:75–85.

    Article  PubMed  CAS  Google Scholar 

  8. Plat J, Beugels I, Gijbels MJ, et al.: Plant sterol or stanol esters retard lesion formation in LDL receptor-deficient mice independent of changes in serum plant sterols. J Lipid Res 2006, 47:2762–2771.

    Article  PubMed  CAS  Google Scholar 

  9. Field FJ, Born E, Mathur SN: Stanol esters decrease plasma cholesterol independently of intestinal ABC sterol transporters and Niemann-Pick C1-like 1 protein gene expression. J Lipid Res 2004, 45:2252–2259.

    Article  PubMed  CAS  Google Scholar 

  10. Jain D, Ebine N, Jia X, et al.: Corn fiber oil and sitostanol decrease cholesterol absorption independently of intestinal sterol transporters in hamsters. J Nutr Biochem 2008, 19:229–236.

    Article  PubMed  CAS  Google Scholar 

  11. Law M: Plant sterol and stanol margarines and health. BMJ 2000, 320:861–864.

    Article  PubMed  CAS  Google Scholar 

  12. Katan MB, Grundy SM, Jones P, et al.: Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels. Mayo Clin Proc 2003, 78:965–978.

    Article  PubMed  CAS  Google Scholar 

  13. Normen L, Holmes D, Frohlich J: Plant sterols and their role in combined use with statins for lipid lowering. Curr Opin Investig Drugs 2005, 6:307–316.

    PubMed  CAS  Google Scholar 

  14. Plat J, van Onselen EN, van Heugten MM, et al.: Effects on serum lipids, lipoproteins and fat soluble antioxidant concentrations of consumption frequency of margarines and shortenings enriched with plant stanol esters. Eur J Clin Nutr 2000, 54:671–677.

    Article  PubMed  CAS  Google Scholar 

  15. European Commission: Opinion of the scientific committee on food on a request for the safety assessment of the use of phytosterol esters in yellow fat spreads. Available at http://ec.europa.eu/food/fs/sc/scf/out144_en.pdf. Accessed April 2, 2009.

  16. US Food and Drug Administration: Summary of all GRAS notices. Center for Food Safety & Applied Nutrition. Available at http://www.foodsafety.gov/~rdb/opa-gras.html. Accessed April 2, 2009.

  17. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001, 285:2486–2497.

  18. Noakes M, Clifton P, Ntanios F, et al.: An increase in dietary carotenoids when consuming plant sterols or stanols is effective in maintaining plasma carotenoid concentrations. Am J Clin Nutr 2002, 75:79–86.

    PubMed  CAS  Google Scholar 

  19. Mellies MJ, Ishikawa TT, Glueck CJ, et al.: Phytosterols in aortic tissue in adults and infants. J Lab Clin Med 1976, 88:914–921.

    PubMed  CAS  Google Scholar 

  20. Miettinen TA, Railo M, Lepantalo M, et al.: Plant sterols in serum and in atherosclerotic plaques of patients undergoing carotid endarterectomy. J Am Coll Cardiol 2005, 45:1794–1801.

    Article  PubMed  CAS  Google Scholar 

  21. Berge KE, Tian H, Graf GA, et al.: Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 2000, 290:1771–1775.

    Article  PubMed  CAS  Google Scholar 

  22. Lee MH, Lu K, Patel SB: Genetic basis of sitosterolemia. Curr Opin Lipidol 2001, 12:141–149.

    Article  PubMed  CAS  Google Scholar 

  23. Salen G, Shefer S, Nguyen L, et al.: Sitosterolemia. J Lipid Res 1992, 33:945–955.

    PubMed  CAS  Google Scholar 

  24. Bao L, Li Y, Deng SX, et al.: Sitosterol-containing lipoproteins trigger free sterol-induced caspase-independent death in ACAT-competent macrophages. J Biol Chem 2006, 281:33635–33649.

    Article  PubMed  CAS  Google Scholar 

  25. Salen G, von Bergmann K, Lutjohann D, et al.: Ezetimibe effectively reduces plasma plant sterols in patients with sitosterolemia. Circulation 2004, 109:966–971.

    Article  PubMed  CAS  Google Scholar 

  26. Salen G, Starc T, Sisk CM, et al.: Intestinal cholesterol absorption inhibitor ezetimibe added to cholestyramine for sitosterolemia and xanthomatosis. Gastroenterology 2006, 130:1853–1857.

    Article  PubMed  Google Scholar 

  27. Nguyen LB, Cobb M, Shefer S, et al.: Regulation of cholesterol biosynthesis in sitosterolemia: effects of lovastatin, cholestyramine, and dietary sterol restriction. J Lipid Res 1991, 32:1941–1948.

    PubMed  CAS  Google Scholar 

  28. Hidaka H, Nakamura T, Aoki T, et al.: Increased plasma plant sterol levels in heterozygotes with sitosterolemia and xanthomatosis. J Lipid Res 1990, 31:881–888.

    PubMed  CAS  Google Scholar 

  29. Lutjohann D, Bjorkhem I, Ose L: Phytosterolaemia in a Norwegian family: diagnosis and characterization of the first Scandinavian case. Scand J Clin Lab Invest 1996, 56:229–240.

    Article  PubMed  CAS  Google Scholar 

  30. Nguyen L, Salen G, Shefer S, et al.: Unexpected failure of bile acid malabsorption to stimulate cholesterol synthesis in sitosterolemia with xanthomatosis. Comparison with lovastatin. Arteriosclerosis 1990, 10:289–297.

    PubMed  CAS  Google Scholar 

  31. Weingartner O, Lutjohann D, Ji S, et al.: Vascular effects of diet supplementation with plant sterols. J Am Coll Cardiol 2008, 51:1553–1561.

    Article  PubMed  Google Scholar 

  32. Glueck CJ, Speirs J, Tracy T, et al.: Relationships of serum plant sterols (phytosterols) and cholesterol in 595 hypercholesterolemic subjects, and familial aggregation of phytosterols, cholesterol, and premature coronary heart disease in hyperphytosterolemic probands and their first-degree relatives. Metabolism 1991, 40:842–848.

    Article  PubMed  CAS  Google Scholar 

  33. Sudhop T, Gottwald BM, von Bergmann K: Serum plant sterols as a potential risk factor for coronary heart disease. Metabolism 2002, 51:1519–1521.

    Article  PubMed  CAS  Google Scholar 

  34. Assmann G, Cullen P, Erbey J, et al.: Plasma sitosterol elevations are associated with an increased incidence of coronary events in men: results of a nested case-control analysis of the Prospective Cardiovascular Munster (PROCAM) study. Nutr Metab Cardiovasc Dis 2006, 16:13–21.

    Article  PubMed  CAS  Google Scholar 

  35. Rajaratnam RA, Gylling H, Miettinen TA: Independent association of serum squalene and noncholesterol sterols with coronary artery disease in postmenopausal women. J Am Coll Cardiol 2000, 35:1185–1191.

    Article  PubMed  CAS  Google Scholar 

  36. Helske S, Miettinen T, Gylling H, et al.: Accumulation of cholesterol precursors and plant sterols in human stenotic aortic valves. J Lipid Res 2008, 49:1511–1518.

    Article  PubMed  CAS  Google Scholar 

  37. Ntanios FY, van de Kooij AJ, de Deckere EA, et al.: Effects of various amounts of dietary plant sterol esters on plasma and hepatic sterol concentration and aortic foam cell formation of cholesterol-fed hamsters. Atherosclerosis 2003, 169:41–50.

    Article  PubMed  CAS  Google Scholar 

  38. Ntanios FY, Jones PJ, Frohlich JJ: Dietary sitostanol reduces plaque formation but not lecithin cholesterol acyl transferase activity in rabbits. Atherosclerosis 1998, 138:101–110.

    Article  PubMed  CAS  Google Scholar 

  39. Vaskonen T, Mervaala E, Krogerus L, et al.: Supplementation of plant sterols and minerals benefits obese Zucker rats fed an atherogenic diet. J Nutr 2002, 132:231–237.

    PubMed  CAS  Google Scholar 

  40. Moghadasian MH, McManus BM, Pritchard PH, et al.: “Tall oil”-derived phytosterols reduce atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 1997, 17:119–126.

    PubMed  CAS  Google Scholar 

  41. Moghadasian MH, McManus BM, Godin DV, et al.: Proatherogenic and antiatherogenic effects of probucol and phytosterols in apolipoprotein E-deficient mice: possible mechanisms of action. Circulation 1999, 99:1733–1739.

    PubMed  CAS  Google Scholar 

  42. Volger OL, Mensink RP, Plat J, et al.: Dietary vegetable oil and wood derived plant stanol esters reduce atherosclerotic lesion size and severity in apoE*3-Leiden transgenic mice. Atherosclerosis 2001, 157:375–381.

    Article  PubMed  CAS  Google Scholar 

  43. Wilund KR, Yu L, Xu F, et al.: No association between plasma levels of plant sterols and atherosclerosis in mice and men. Arterioscler Thromb Vasc Biol 2004, 24:2326–2332.

    Article  PubMed  CAS  Google Scholar 

  44. Tomoyori H, Kawata Y, Higuchi T, et al.: Phytosterol oxidation products are absorbed in the intestinal lymphatics in rats but do not accelerate atherosclerosis in apolipoprotein E-deficient mice. J Nutr 2004, 134:1690–1696.

    PubMed  CAS  Google Scholar 

  45. Windler E, Zyriax BC, Kuipers F, et al.: Association of plasma phytosterol concentrations with incident coronary heart disease Data from the CORA study, a case-control study of coronary artery disease in women. Atherosclerosis 2009, 203:284–290.

    Article  PubMed  CAS  Google Scholar 

  46. Pinedo S, Vissers MN, von Bergmann K, et al.: Plasma levels of plant sterols and the risk of coronary artery disease: the prospective EPIC-Norfolk Population Study. J Lipid Res 2007, 48:139–144.

    Article  PubMed  CAS  Google Scholar 

  47. Fassbender K, Lutjohann D, Dik MG, et al.: Moderately elevated plant sterol levels are associated with reduced cardiovascular risk-the LASA study. Atherosclerosis 2008, 196:283–288.

    Article  PubMed  CAS  Google Scholar 

  48. Silbernagel G, Fauler G, Renner W, et al.: The relationships of cholesterol metabolism and plasma plant sterols with the severity of coronary artery disease. J Lipid Res 2009, 50:334–341.

    Article  PubMed  CAS  Google Scholar 

  49. Raitakari OT, Salo P, Ahotupa M: Carotid artery compliance in users of plant stanol ester margarine. Eur J Clin Nutr 2008, 62:218–224.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Carles Escolà-Gil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calpe-Berdiel, L., Méndez-González, J., Blanco-Vaca, F. et al. Increased plasma levels of plant sterols and atherosclerosis: A controversial issue. Curr Atheroscler Rep 11, 391–398 (2009). https://doi.org/10.1007/s11883-009-0059-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-009-0059-x

Keywords

Navigation