Skip to main content

Advertisement

Log in

Diagnosis of immunodeficiency: Clinical clues and diagnostic tests

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Recognition of immunodeficiency allows steps to be taken to minimize morbidity and mortality. Immunodeficiency can be secondary to viral infection, most importantly secondary to HIV-1 worldwide, medications, disruption of the usual infection clearance mechanisms, or secondary to a myriad of systemic disorders. Immunodeficiency may also be due to one of the growing list of primary immunodeficiency disorders. In infancy, lymphopenia should trigger an evaluation investigating the possibility of severe combined immunodeficiency. Evaluations of children should be done keeping in mind that normal numbers of lymphocytes are higher in children than in adults, immunoglobulin levels in children are lower than in adults in younger age groups, and antibody production in response to polysaccharide antigens is not usually fully developed in the less-than 2-year-old child.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. [No authors listed] Primary immunodeficiency diseases. Report of an IUIS Scientific Committee. International Union of Immunological Societies. Clin Exp Immunol 1999, 118(Suppl):1–34.

    Google Scholar 

  2. Primary Immunodeficiency Diseases: a Molecular Genetic Approach. Edited by Ochs HD, Smith CIE, Puck JM. New York: Oxford University Press; 1999.

  3. Schroeder HW, Zhu ZB, March RE, et al.: Susceptibilty locus of IgA deficiency and common variable immunodeficiency in the HLA-DR3, -B8, -A1 haplotypes. Mol Med 1998, 4:72–86.

    PubMed  CAS  Google Scholar 

  4. Cunningham-Rundles C, Bodian C: Common variable immunodeficiency: clinical and immunologic features of 248 patients. Clin Immunol 1999, 92:34–48. This is the largest recent cohort description of individuals with common variable immunodeficiency disease (CVID).

    Article  PubMed  CAS  Google Scholar 

  5. Tsukada S, Saffran DC, Rawlings DJ, et al.: Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 1993, 72:279–290.

    Article  PubMed  CAS  Google Scholar 

  6. Vetric D, Verochovsky I, Sideras P, et al.: The gene involved in X-linked agammaglobulinemia is a member of the src family of protein-tyrosine kinases. Nature 1993, 361:226–233.

    Article  Google Scholar 

  7. Yel L, Minegishi Y, Coustan-Smith E, et al.: Mutations in the mu heavy-chain gene in patients with agammaglobulinemia. N Engl J Med 1996, 335:1486–1493.

    Article  PubMed  CAS  Google Scholar 

  8. Buckley RH: Primary immunodeficiency diseases due to defects in lymphocytes. N Engl J Med 2000, 343:1313–1324. This is a comprehensive recent review of lymphocyte defects.

    Article  PubMed  CAS  Google Scholar 

  9. Minegishi Y, Coustan-Smith E, Wang YH, et al.: Mutations in the human lambda 5/14.1 gene result in B cell deficiency and agammaglobulinemia. N Engl J Med 1998, 187:71–77.

    CAS  Google Scholar 

  10. Minegishi Y, Coustan-Smith E, Rapalus L, et al.: Mutations in Igalpha (CD79a) result in a complete block in B cell development. J Clin Invest 1999, 104:1115–1121.

    Article  PubMed  CAS  Google Scholar 

  11. Minegishi Y, Rohrer J, Coustan-Smith E, et al.: An essential role for BLNK in human B cell development. Science 1999, 286:1954–1957.

    Article  PubMed  CAS  Google Scholar 

  12. Fischer A: Primary immunodeficiency diseases: an experimental model for molecular medicine. Lancet 2001, 357:1863–1869. This is a comprehensive review of molecular mechanisms of primary immunodeficiency disorders.

    Article  PubMed  CAS  Google Scholar 

  13. Puel A, Ziegler SF, Buckley RH, et al.: Defective IL7R expression in T(-)B(+)NK(+) severe combined immunodeficiency. Nat Genet 1998, 20:394–937.

    Article  PubMed  CAS  Google Scholar 

  14. Macchi P, Villa A, Gilliani S, et al.: Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 1995, 377:65–68.

    Article  PubMed  CAS  Google Scholar 

  15. Russe SM, Tayebi N, Nakajima H, et al.: Mutation of Jak3 in a patient with SCID: essential role of JAK3 in lymphoid development. Science 1995, 270:797–800.

    Article  Google Scholar 

  16. Schwarz K, Gauss GH, Ludwig L, et al.: RAG mutations in human B cell negative SCID. Science 1996, 274:97–99.

    Article  PubMed  CAS  Google Scholar 

  17. Elder ME, Lin D, Clever J, et al.: Human severe combined immunodeficiency due to a defect in ZAP-70, a cell tyrosine kinase. Science 1994, 264:1596–1599.

    Article  PubMed  CAS  Google Scholar 

  18. Arpaia E, Shahar M, Dadi H, et al.: Defective T cell receptor signaling and CD8+ thymic selection in humans lacking ZAP-70 kinase. Cell 1994, 76:947–958.

    Article  PubMed  CAS  Google Scholar 

  19. Steimle V, Durand B, Barras E, et al.: A novel DNA-binding regulatory factor is mutated in primary MHC class II deficiency (bare lymphocyte syndrome). Genes Dev 1995, 9:1021–1032.

    PubMed  CAS  Google Scholar 

  20. Villard J, Lisowaska-Grospierre B, Van den Elsen P, et al.: Mutation of a RFXAP, a regulator of MHC class II genes, in primary MHC class II deficiency. N Engl J Med 1997, 337:748–753.

    Article  PubMed  CAS  Google Scholar 

  21. Masternak K, Barras E, Zufferey M, et al.: A gene encoding a novel RFX-associated transactivator is mutated in the majority of MHC class II deficiency patients. Nat Genet 1998, 20:273–277.

    Article  PubMed  CAS  Google Scholar 

  22. Buckley RH, Schiff S, Schiff RI, et al.: Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N Engl J Med 1999, 340:508–616.

    Article  PubMed  CAS  Google Scholar 

  23. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, et al.: Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000, 288:699–672.

    Article  Google Scholar 

  24. Hacein-Bey-Abina S, LeDeist F, Carlier F, et al.: Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 2002, 346:1185–1193. This describes a sustained cure of SCID patients with gene therapy.

    Article  PubMed  CAS  Google Scholar 

  25. Vantrappen G, Devriendt K, Swillen A, et al.: Presenting symptoms and clinical features in 130 patients with velocardio-facial syndrome. The Leuven experience. Genet Couns 1999, 10:3–9.

    PubMed  CAS  Google Scholar 

  26. McDonald-McGinn DM, Kirschner R, Goldmuntz E, et al.: The Philadelphia story: the 22q11.2 deletion: report on 250 patients. Genet Couns 1999, 10:11–24.

    PubMed  CAS  Google Scholar 

  27. Ramesh N, Geha RS, Notarangelo LD: CD40 ligand and the hyper IgM syndrome. In Primary Immunodeficiency Diseases: a Molecular Genetic Approach. Edited by Ochs HD, Smith CIE, Puck JM. New York: Oxford University Press; 1999:233–249.

    Google Scholar 

  28. Allen RC, Armitage RJ, Conley ME, et al.: CD40 ligand gene defects responsible for X-linked hyper IgM syndrome. Science 1993, 259:990–993.

    Article  PubMed  CAS  Google Scholar 

  29. Korthauer U, Graf D, Mages HW: Defective expression of T cell CD40 ligand causes X-linked immunodeficiency with hyper IgM. Nature 1993, 361:539–541.

    Article  PubMed  CAS  Google Scholar 

  30. Noelle RJ, Roy M, Shepherd DM, et al.: A 39-kDa protein on activated helper T cells binds CD40 and transduces the signal for cognate activation of B cells. Proc Natl Acad Sci USA 1992, 89:6550–6554.

    Article  PubMed  CAS  Google Scholar 

  31. Ferrari S, Giliani S, Insalaco A, et al.: Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc Natl Acad Sci USA 2001, 98:12614–12619.

    Article  PubMed  CAS  Google Scholar 

  32. Minegishi Y, Lavoie A, Cunningham-Rundles C, et al.: Mutations in activation -induced cytidine deaminase in patients with hyper IgM syndrome. Clin Immunol 2000, 97:203–210.

    Article  PubMed  CAS  Google Scholar 

  33. Revy P, Muto T, Levy Y, et al.: Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell 2000, 102:565–575.

    Article  PubMed  CAS  Google Scholar 

  34. Jain A, Ma CA, Lius A, et al.: Specific missense mutations in Nemo result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat Immunol 2001, 2:223–228. This is a recent molecular description of the cause of hyper-IgM syndrome with lymphocytic ectodermal dysplasia.

    Article  PubMed  CAS  Google Scholar 

  35. Mansour N, Woffendin H, Mitton S, et al.: Incontinentia pigmenti in a surviving male is accompanied by hypohydrotic ectodermal dysplasia and recurrent infection. Am J Med Genet 2001, 99:172–177. This is a recent molecular description of the cause of hyper-IgM syndrome with lymphocytic ectodermal dysplasia.

    Article  PubMed  CAS  Google Scholar 

  36. Doffinger R, Smahi A, Bessia C, et al.: X-linked anhydrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappa B signaling. Nat Genet 2001, 27:277–285. This is a recent molecular description of the cause of hyper-IgM syndrome with lymphocytic ectodermal dysplasia.

    Article  PubMed  CAS  Google Scholar 

  37. Srahna M, Remacle JE, Annamalai K, et al.: NF-kappaB is involved in the regulation of CD154 (CD40 ligand) expression in primary human T cells. Clin Exp Immunol 2001, 125:229–236.

    Article  PubMed  CAS  Google Scholar 

  38. Derry JM, Ochs MS, Francke U: Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell 1994, 78:635–644.

    Article  PubMed  CAS  Google Scholar 

  39. Savistsky K, Bar-Shira A, Gilad S, et al.: A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 1995, 268:1749–1753.

    Article  Google Scholar 

  40. Bemiller LS, Roberts DH, Starko KM, Curnutte JT: Safety and effectiveness of long-term interferon gamma therapy in patients with chronic granulomatous disease. Blood Cells Mol Dis 1995, 21:239–247.

    Article  PubMed  CAS  Google Scholar 

  41. Luhn K, Wild MK, Eckhardt M, et al.: The gene defective in leukocyte adhesion deficiency II encodes a putative GDP-fucose transporter. Nat Genet 2001, 2811:69–72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, M.E. Diagnosis of immunodeficiency: Clinical clues and diagnostic tests. Curr Allergy Asthma Rep 2, 349–355 (2002). https://doi.org/10.1007/s11882-002-0066-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-002-0066-2

Keywords

Navigation