Skip to main content
Log in

Development and application of a model (ExDoM) for calculating the respiratory tract dose and retention of particles under variable exposure conditions

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

The ExDoM is a model for calculating the human exposure and the deposition, dose, clearance, and finally retention of aerosol particles in the respiratory tract at specific times during and after exposure, under variable exposure conditions. Specifically, the model incorporates an exposure module which allows the user to set variable or static exposure conditions (exposure concentration, physical exertion levels, and different environments) or in the case of the physical exertion levels and exposure environment to choose from a list of typical exposure scenarios (activity pattern, exposure environment, and physical exertion level). The exposure concentration can refer to total particulate matter (PM) concentration or chemically resolved particles of variant size distributions. The aerosol size parameters can be introduced to the model either directly as median aerodynamic diameter and geometric standard deviation or are estimated by the model from measurement data. The model treats monodisperse or polydisperse aerosol size distributions. The human respiratory tract (RT) model of the International Commission on Radiological protection (ICRP Publication 66) is utilized for the respiratory tract deposition calculations. The above together with the dose and clearance/retention modules can be used to study together exposure and dose of chemically resolved particles of variant size distributions. The ExDoM model implementation in order to study the exposure and dose of particles in the human RT is demonstrated at two locations. In particular, the dose and retention of particles to RT and the mass transferred to the gastrointestinal tract and blood capillaries are estimated for an adult Caucasian male exposed to PM10 at a coastal remote site in the eastern Mediterranean. In addition, the regional lung doses of specific chemical components of PM10 (inorganic ions and carbonaceous compounds) during realistic exposure conditions outdoors at a residential background area in Oslo, Norway, were assessed. The results from the two studies showed that the dose was enhanced for the carbonaceous fine fraction of particles in the alveolar region of the lung whereas the dose of crustal material dominated in the extrathoracic region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aleksandropoulou V (2004) Study on the deposition and translocation of particulate matter in the human respiratory tract (case studies). Dissertation, Technical University of Crete (In Greek)

  • Aleksandropoulou V, Mitsakou C, Housiadas C, Lazaridis M (2008) Particulate matter exposure and dose relationships derived from realistic exposure scenarios. Indoor Built Environ 17:237–246

    Article  Google Scholar 

  • Bailey MR, Ansoborlo E, Guilmette RA, Paquel F (2003) Practical application of the ICRP human respiratory tract model. Radiat Prot Dosim 105(1–4):71–76

    Article  CAS  Google Scholar 

  • Bailey MR, Ansoborlo E, Guilmette RA, Paquel F (2007) Updating the ICRP human respiratory tract model. Radiat Prot Dosim 127(1–4):31–34

    Article  CAS  Google Scholar 

  • Bolch WE, Huston TE, Farfan EB, Vernetson WG, WEm B (2003) Influences of parameter uncertainties within the ICRP-66 respiratory tract model: particle clearance. Health Phys 84(4):421–435

    Article  CAS  Google Scholar 

  • Brown JS (2005) Particle inhalability at low wind speeds. Inhal Toxicol 17(14):831–837

    Google Scholar 

  • Chan TL, Lippmann M (1980) Experimental measurements and empirical modelling of the regional deposition of inhaled particles in humans. Am Ind Hyg Assoc J 41:399–409

    Article  CAS  Google Scholar 

  • Cross ES, Slowik JG, Davidovits P, Allan JD, Worsnop DR, Jayne JT, Lewis DK, Canagaratna M, Onasch TB (2007) Laboratory and ambient particle density determinations using light scattering in conjunction with aerosol mass spectrometry. Aerosol Sci Technol 41(4):343–359

    Article  CAS  Google Scholar 

  • Dab W, Segala C, Dor F, Festy B, Lameloise P, Le Moellec Y, Le Tertre A, Medina S, Quenel P, Wallaert B, Zmirou D (2001) Air pollution and health: correlation or causality? The case of the relationship between exposure to particles and cardiopulmonary mortality. J Air Waste Manage Assoc 51:220–235

    Article  CAS  Google Scholar 

  • Darquenne C, Paiva M (1994) One-dimensional simulation of aerosol transport and deposition in the human lung. J Appl Physiol 77:2889–2898

    CAS  Google Scholar 

  • Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG, Speizer FE (1993) An association between air pollution and mortality in six U. S. Cities. N Engl J Med 329:1753–1808

    Article  CAS  Google Scholar 

  • Georgopoulos PG (2008) A multiscale approach for assessing the interactions of environmental and biological systems in a holistic health risk assessment framework. Water Air Soil Pollut Focus 8:3–21

    Article  Google Scholar 

  • Georgopoulos PG, Lioy PJ (2006) From a theoretical framework of human exposure and dose assessment to computational system implementation: the modelling and environment for total risk studies (MENTOR). J Toxicol Environ Health B 9:457–483

    Article  CAS  Google Scholar 

  • Gradon L, Podgorski A (1999) Deposition and retention of fine and ultrafine particles in the pulmonary region of human lungs. Normal and pathological cases. J Aerosol Sci 30:S801–S802

    Article  Google Scholar 

  • Hansen JE, Ampaya EP (1975) Human air space shapes, sizes, areas, and volumes. J Appl Physiol 38(6):990–995

    CAS  Google Scholar 

  • Hinds WC (1999) Aerosol technology: properties, behaviour and measurement of airborne particles. Wiley, New York

    Google Scholar 

  • International Commission on Radiological Protection (ICRP) (1994) Human Respiratory Tract Model for Radiological Protection. ICRP Publication 66. Pergamon Press, Oxford

  • Kalivitis N, Birmili W, Stock M, Wehner B, Massling A, Wiedensohler A, Gerasopoulos E, Mihalopoulos N (2008) Particle size distributions in the Eastern Mediterranean troposphere. Atmos Chem Phys 8:6729–6738

    Article  CAS  Google Scholar 

  • Karanasiou A, Eleftheriadis K, Vratolis S, Zaebas P, Mihalopoulos N, Mitsakou C, Housiadas C, Lazaridis M, Ondracek J, Dzumbova L (2008) Size distribution of inorganic species and their inhaled dose in a detergent industrial workplace. Water Air Soil Pollut Focus 8:71–76

    Article  CAS  Google Scholar 

  • Katsouyanni K, Touloumi G, Spix C, Schwartz J, Balducci F, Medina S, Rossi G, Wojtyniak B, Sunyer J, Bacharova L, Schouten JP, Ponka A, Anderson HR (1995) Short term effects of ambient sulphur dioxide and particulate matter on mortality in 12 European cities: results from time series data from the APHEA project. Br Med J 314:1658–1663

    Article  Google Scholar 

  • Katsouyanni K, Touloumi G, Samoli E, Gryparis A, Le Tatre A, Monopolis Y, Rossi G, Zmirou D, Ballester F, Boumghar A, Anderson H, Wojtyniak B, Paldy A, Barunstein R, Pekkanen J, Schnidler C, Schwartz J (2001) Confounding effect modification in the short-term effects of ambient particles on total mortality: results from 29 European cities within the APHEA 2 project. Epidemiology 12(5):521–531

    Google Scholar 

  • Koblinger L, Hofmann W (1990) Monte Carlo modeling of aerosol deposition in human lungs. Part I: simulation of particle transport in a stochastic lung structure. J Aerosol Sci 21:661–674

    Article  Google Scholar 

  • Kousa A, Kukkonen J, Karrppinen A, Aarnio P, Koskentalo T (2002) A model for evaluating the population exposure to ambient air pollution in an urban area. Atmos Environ 36:2109–2119

    Article  CAS  Google Scholar 

  • Krewski D, Burnett RT, Goldberg MS, Hoover K, Siemiatycki J, Jerrett M, Abrahamowicz M, White WH et al (2000) Reanalysis of the Harvard Six Cities Study and the American Cancer Society Study of Particulate Air Pollution and Mortality. Health Effects Institute. http://pubs.healtheffects.org/view.php?id=6. Accessed 11 November 2010

  • Lazaridis M, Broday D, Hov O, Georgopoulos PG (2001) Integrated exposure and dose modeling and analysis system. 3. Deposition of inhaled particles in the human respiratory tract. Environ Sci Technol 35:3727–3734

    Article  CAS  Google Scholar 

  • Lazaridis M, Dahlin E, Hansen JE, Smolik J, Schmidbauer N, Moravec P, Zdimal V, Hermansen O, Glytsos T, Svendby T, Dye C (2003) Indoor/outdoor particulate matter measurements in two residential houses in Oslo, Norway. J Aerosol Sci 34(S2):1367–1368

    Google Scholar 

  • Lazaridis M, Spyridaki A, Smolik J, Zdimal V, Eleftheriadis K, Aleksandropoulou V, Hov O, Georgopoulos PG (2005) Mesoscale modeling of combined aerosol and photo-oxidant processes in the Eastern Mediterranean. Atmos Chem Phys 5:927–940

    Article  CAS  Google Scholar 

  • Lazaridis M, Aleksandropoulou V, Smolik J, Hansen JE, Glytsos T, Kalogerakis N, Dahlin E (2006) Physico-chemical characterization of indoor/outdoor particulate matter in two residential houses in Oslo, Norway: measurements overview and physical properties. Indoor Air 16:282–295

    Article  CAS  Google Scholar 

  • Lazaridis M, Aleksandropoulou V, Hansen JE, Dye C, Eleftheriadis K, Katsivela E (2008) Inorganic and carbonaceous components in indoor/outdoor particulate matter in two residential houses in Oslo, Norway. J Air Waste Manage Assoc 58(3):346–356

    Article  CAS  Google Scholar 

  • Martonen TB, Zhang Z (1993) Deposition of sulfate acid aerosols in the developing human lung. Inhal Toxicol 5:165–187

    Article  CAS  Google Scholar 

  • Ménache MG, Miller FJ, Raabe OG (1995) Particle inhalability curves for humans and small laboratory animals. Ann Occup Hyg 39:317–328

    Google Scholar 

  • Mihalopoulos N, Stephanou E, Kanakidou M, Pilitsidis S, Bosquet P (1997) Tropospheric aerosol ionic composition in the Eastern Mediterranean region. Tellus B Chem Phys Meteorol 49:314–326

    Article  Google Scholar 

  • Nixon W, Egan MJ (1987) Modelling study of regional deposition of inhaled aerosols with special reference to effects of ventilation asymmetry. J Aerosol Sci 18:563–579

    Article  Google Scholar 

  • NUREG (2002) Proceedings of the Environmental Software Systems Compatibility and Linkage Workshop. U.S. Nuclear Regulatory Commission. Rockville, Maryland. NUREG/CP-0177, PNNL-13654. http://www.nrc.gov/reading-rm/doc-collections/nuregs/conference/cp0177/0177.pdf. Accessed 11 November 2010

  • Phalen RF, Oldham MJ, Beaucage CB, Crocker TT, Mortensen JD (1985) Postnatal enlargement of human tracheo-bronchial airways and implications for particle deposition. Anat Rec 212(4):368–380

    Article  CAS  Google Scholar 

  • Pope CA, Dockery D (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage Assoc 56:709–742

    Article  CAS  Google Scholar 

  • Pope C, Hill R, Villegas G (1999) Particulate air pollution and daily mortality on Utah’s Wasatch Front. Environ Health Perspect 107:567–573

    Article  CAS  Google Scholar 

  • Pope CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287:1132–1141

    Article  CAS  Google Scholar 

  • Price OT, Asgharian B, Miller FJ, Cassee FR, Winter-Sorkina R (2002) Multiple Path Particle Dosimetry model (MPPD v1.0): A model for human and rat airway particle dosimetry. RIVM rapport 650010030. RIVM, Bilthoven, The Netherlands

  • Price PS, Chaisson CF, Koontz M, Wilkes C, Ryan B, Macintosh D, Georgopoulos PG (2003) Construction of a Comprehensive Chemical Exposure Framework Using Person Oriented Modeling. Prepared by The Lifeline Group for The Exposure Technical Implementation Panel, American Chemistry Council. Contract Number 1338. http://www.thelifelinegroup.org/LifeLine/Documents/comprehensive_chemical_exposure_framework.pdf. Accessed 11 November 2010

  • Ramachandran G, Vincent JH (1997) Evaluation of two inversion techniques for retrieving health-related aerosol fractions from personal cascade impactor measurements. Am Ind Hyg Assoc J 58:15–22

    Article  CAS  Google Scholar 

  • Rudolf G, Gebhart J, Heyder J, Schiller ChF, Stahlhofen W (1986) An empirical formula describing aerosol deposition in man for any particle size. J Aerosol Sci 17:350–355

    Article  Google Scholar 

  • Russell AG, Brunekreef B (2009) A focus on particulate matter and health. Environ Sci Technol 43(13):4620–4625

    Article  CAS  Google Scholar 

  • Salma I, Balashazy I, Winkler-Heil R, Hofmann W, Zaray G (2002) Effect of particle mass size distribution on the deposition of aerosols in the human respiratory system. J Aerosol Sci 33:119–132

    Article  CAS  Google Scholar 

  • Salvi S, Holgate T (1999) Mechanisms of particulate matter toxicity. Clin Exp Allergy 29:1187–1194

    Article  CAS  Google Scholar 

  • Sasso AF, Isukapalli SS, Georgopoulos PG (2010) A generalized physiologically-based toxicokinetic modeling system for chemical mixtures containing metals. Theor Biol Med Model 7:article number 17

    Google Scholar 

  • Schwartz J, Norris G, Larson T, Sheppard L, Claiborne C, Koenig J (1999) Episodes of high coarse particle concentrations are not associated with increased mortality. Environ Health Perspect 107:339–342

    Article  CAS  Google Scholar 

  • Smith JRH, Bailey MR, Etherington G, Shutt AL, Youngman MJ (2007) Further study of the effect of particle size on slow particle clearance from the bronchial tree. Radiat Prot Dosim 127(1–4):35–39

    Article  CAS  Google Scholar 

  • Smolik J, Zdimal V, Schwarz J, Lazaridis M, Havranek V, Eleftheriadis K, Mihalopoulos N, Bryant C, Colbeck I (2003) Size resolved mass concentration and elemental composition of atmospheric aerosols over the eastern Mediterranean area. Atmos Chem Phys 3:2207–2216

    Article  CAS  Google Scholar 

  • Stahlhofen W, Gebhart J, Heyder J (1980) Experimental determination of the regional deposition of aerosol particles in the human respiratory tract. Am Ind Hyg Assoc J 41:385–398

    Article  CAS  Google Scholar 

  • Sturm R (2007) A computer model for the clearance of insoluble particles from the tracheobronchial tree of the human lung. Comput Biol Med 37:680–690

    Article  Google Scholar 

  • Sturm R, Hofmann W (2006) A multi-compartment model for slow bronchial clearance of insoluble particles—extension of the ICRP human respiratory tract models. Radiat Prot Dosim 118(4):384–394

    Article  CAS  Google Scholar 

  • Turpin BJ, Lim HJ (2001) Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci Technol 35(1):602–610

    CAS  Google Scholar 

  • US EPA (1999) Total Risk Integrated Methodology, TRIM.expo.: Technical Support Document. US EPA Office of Air Quality Planning and Standards. Office of Air and Radiation. Research Triangle Park, NC. EPA-453/D-99-001

  • US EPA (2003) A Framework for a Computational Toxicology Research Program in ORD. US EPA Office of Research and Development, Washington DC. EPA/600/R-03/065

  • US EPA (2004a) Air Quality Criteria for Particulate Matter. Research Triangle Park, NC. EPA/600/P-99/002aD

  • US EPA (2004b) Report on the Model SHEDS-MENTOR-1A. US EPA Council for Regulatory Environmental Modeling (CREM), Washington DC. http://cfpub.epa.gov/crem/crem_report.cfm?deid=75917

  • US EPA (2004c) Report on the Model SHEDS-MENTOR-4M. US EPA Council for Regulatory Environmental Modeling (CREM). Washington DC. http://cfpub.epa.gov/crem/crem_report.cfm?deid=75918

  • Vincent JH, Mark D (1982) Application of Blunt sampler theory for the definition and measurement of inhalable dust. Ann Occup Hyg 26(1–4):3–19

    Article  CAS  Google Scholar 

  • Weibel ER (1963) The normal human lung. Academic, New York

    Google Scholar 

  • WHO (2006) World Health Organisation Air Quality Guidelines, Global Update 2005. http://www.euro.who.int/__data/assets/pdf_file/0005/78638/E90038.pdf. Accessed 11 November 2010

  • Wolfenbarger JK, Seinfeld JK (1990) Inversion of aerosol size distribution data. J Aerosol Sci 21:227–247

    Article  CAS  Google Scholar 

  • Yeh HC, Schum GM (1980) Models of human lung airways and their application to inhaled particle deposition. Bull Math Biol 42:461–480

    CAS  Google Scholar 

  • Yu CP, Diu CK (1982) A comparative study of aerosol deposition in different lung models. Am Ind Hyg Assoc J 43:54–65

    Article  CAS  Google Scholar 

  • Yu CP, Diu CK (1983) Total and regional deposition of inhaled aerosols in humans. J Aerosol Sci 5:599–609

    Article  Google Scholar 

  • Zhang Q, Canagaratna MR, Jayne JT, Worsnop DR, Jimenez JL (2005) Time and size-resolved chemical composition of submicron particles in Pittsburg-Implications for aerosol sources and processes. J Geophys Res D: Atmos 110:D07S09

Download references

Acknowledgments

This work was supported by the Research Committee of Technical University of Crete under Basic Research grant 2006. The measurements at Oslo were performed in the framework of the European Commission project URBAN-AEROSOL (grant EVK4-CT-2000-00018) and the measurements at Finokalia in the framework of the European Commission project SUB-AERO (grant EVK2-CT-1999-00052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihalis Lazaridis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleksandropoulou, V., Lazaridis, M. Development and application of a model (ExDoM) for calculating the respiratory tract dose and retention of particles under variable exposure conditions. Air Qual Atmos Health 6, 13–26 (2013). https://doi.org/10.1007/s11869-010-0126-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-010-0126-z

Keywords

Navigation