Skip to main content
Log in

Redundancy for localized frames

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Redundancy is the qualitative property which makes Hilbert space frames so useful in practice. However, developing a meaningful quantitative notion of redundancy for infinite frames has proven elusive. Though quantitative candidates for redundancy exist, the main open problem is whether a frame with redundancy greater than one contains a subframe with redundancy arbitrarily close to one. We will answer this question in the affirmative for 1-localized frames. We then specialize our results to Gabor multi-frames with generators in M 1(R d), and Gabor molecules with envelopes in W(C, l 1). As a main tool in this work, we show there is a universal function g(x) so that, for every ε =s> 0, every Parseval frame {f i } M i=1 for an N-dimensional Hilbert space H N has a subset of fewer than (1+ε)N elements which is a frame for H N with lower frame bound g(ε/(2M/N − 1)). This work provides the first meaningful quantative notion of redundancy for a large class of infinite frames. In addition, the results give compelling new evidence in support of a general definition of redundancy given in [5].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Balan, P. G. Casazza, C. Heil and Z. Landau, Deficits and excesses of frames, Advances in Computational Mathematics 18 (2003), 93–116.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Balan, P. G. Casazza, C. Heil and Z. Landau, Excesses of Gabor frames, Applied and Computational Harmonic Analysis 14 (2003), 87–106.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Balan, P. G. Casazza, C. Heil and Z. Landau, Density, overcompleteness, and localization of frames I: Theory, The Journal of Fourier Analysis and Applications 12 (2006), 105–143.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Balan, P. G. Casazza, C. Heil and Z. Landau, Density, overcompleteness, and localization of frames II: Gabor frames, The Journal of Fourier Analysis and Applications 12 (2006), 307–344.

    Article  MATH  Google Scholar 

  5. R. Balan and Z. Landau, Measure functions for frames, Journal of Functional Analysis 252 (2007), 630–676.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. G. Casazza, Local theory of frames and schauder bases for hilbert space, Illinois Journal of Mathematics 43 (1999), 291–306.

    MathSciNet  MATH  Google Scholar 

  7. P. G. Casazza, The art of frame theory, Taiwanese Journal of Mathematics 4 (2000), 129–201.

    MathSciNet  MATH  Google Scholar 

  8. O. Christensen, B. Deng and C. Heil, Density of Gabor frames, Applied and Computational Harmonic Analysis 7 (1999), 292–304.

    Article  MathSciNet  MATH  Google Scholar 

  9. O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2003.

    MATH  Google Scholar 

  10. R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Transactions of the American Mathematical Society 72 (1952), 341–366, reprinted in hewa06.

    Article  MathSciNet  MATH  Google Scholar 

  11. H. G. Feichtinger, On a new Segal algebra, Monatshefte für Mathematik 92 (1981), 269–289.

    Article  MathSciNet  MATH  Google Scholar 

  12. H. G. Feichtinger, Atomic characterizations of modulation spaces through Gabor-type representations, in Proceedins of a Conference on Constructive Function Theory, The Rocky Mountain Journal of Mathematics 19 (1989), 113–126.

  13. H. G. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions, I, Journal of Functional Analysid 86 (1989), 307–340.

    Article  MATH  Google Scholar 

  14. H. G. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions, II, Monatshefte für Mathematik 108 (1989), 129–148.

    Article  MATH  Google Scholar 

  15. H. G. Feichtinger and K. Gröchenig, Non-orthogonal wavelet and Gabor expansions, and group representations, in Wavelets and their Applications, (G. Beylkin, R. Coifman and I. Daubechies, eds.), Jones and Bartlett, Boston, MA, 1992, pp. 353–376.

    Google Scholar 

  16. H. G. Feichtinger and K. Gröchenig, Gabor frames and time-frequency analysis of distributions, Journal of Functional Analysis 146 (1997), 464–495.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Fornasier and K. Gröchenig, Intrinsic localization of frames, Constructive Approximation, 22 (2005), 395–415.

    Article  MathSciNet  MATH  Google Scholar 

  18. K. Gröchenig, Foundations of Time-Frequency Analysis, Appled Numerical Harmonic Analysis, Birkhäuser Boston, Boston, MA, 2001.

    Google Scholar 

  19. K. Gröchenig, Localization of Frames, Banach Frames, and the Invertibility of the Frame Operator, The Journal of Fourier Analysis and Applications 10 (2004), 105–132.

    Article  MathSciNet  MATH  Google Scholar 

  20. C. Heil, On the history and evolution of the density theorem for Gabor frames, Technical Report, Georgia Institute of Technology, 2006.

  21. N. Hindman and D. Strauss, Algebra in the Stone-Čech Compactification, de Gruyter Expositions in Mathematics, Vol. 27, Walter de Gruyter and Co., Berlin, 1998.

    Book  MATH  Google Scholar 

  22. R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras. I. AMS Graduate Studies in Mathematics 15, American Mathematical Society, Providence, RI, 1997.

    Google Scholar 

  23. H. J. Landau, Necessary density conditions for sampling and interpolation of certain entire functions, Acta Mathematica 117 (1967), 37–52.

    Article  MathSciNet  MATH  Google Scholar 

  24. Yu. I. Lyubarskij, Frames in the Bargmann space of entire functions, in Entire and Subharmonic Functions, Volume 11 of Advances in Soviet Mathematics, American Mathematical Society, Providence, RI, 1992, pp. 167–180.

    Google Scholar 

  25. F. Riesz and B. S. Nagy, Functional Analysis, Dover Publications, New York, 1990.

    MATH  Google Scholar 

  26. K. Seip, Density theorems for sampling and interpolation in the Bargmann-Fock space. I, Journal für die Reine und Angewandte Mathematik 429 (1992), 91–106.

    Article  MathSciNet  MATH  Google Scholar 

  27. K. Seip and R. Wallstén, Density theorems for sampling and interpolation in the Bargmann-Fock space. II, Journal für die Reine und Angewandte Mathematik 429 (1992), 107–113.

    MATH  Google Scholar 

  28. D. S. Spielman and N. Srivastave, An elementary proof of the restricted invertibility theorem, Israel Journal of Mathematics, to appear. http://arxiv.org/abs/0911.1114.

  29. R. Vershynin, Subsequences of frames, Studia Mathematica 145 (2001), 185–197.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Balan.

Additional information

The first author was supported by NSF DMS 0807896.

The second author was supported by NSF DMS 0704216 and 1008183, and thanks the American Institute of Mathematics for their continued support.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balan, R., Casazza, P. & Landau, Z. Redundancy for localized frames. Isr. J. Math. 185, 445–476 (2011). https://doi.org/10.1007/s11856-011-0118-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-011-0118-1

Keywords

Navigation