Skip to main content
Log in

Twinning in Strained Ferroelastics: Microstructure and Statistics

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The generation of functional interfaces such as superconducting and ferroelectric twin boundaries requires new ways to nucleate as many interfaces as possible in bulk materials and thin films. Materials with high densities of twin boundaries are often ferroelastics and martensites. In this review, we show that the nucleation and propagation of twin boundaries depend sensitively on temperature and system size. Sudden changes of the domain pattern manifest themselves as avalanches or “jerks” in the potential energy of the sample. At high temperatures, the change of the twin pattern is thermally activated; the probability P to find sudden energy changes of jerks E follows the Vogel–Fulcher statistics P(E) ~ exp (E/(T − T VF)), whereas the athermal regime at low temperatures corresponds to power-law statistics P(E) ~ E ε. We find that the complexity of the pattern is well characterized by the number of junctions between twin boundaries. Materials with soft bulk moduli have much higher junction densities than those with hard bulk moduli. Soft materials also show an increase in the junction density with diminishing sample size. The change of the complexity and the number density of twin boundaries represents an important step forward in the development of “domain boundary engineering,” where the functionality of the materials is directly linked to the domain pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Aird and E.K.H. Salje, J. Phys.: Condens. Matter 10, L377 (1998).

    Article  Google Scholar 

  2. Y. Kim, M. Alexe, and E.K.H. Salje, Appl. Phys. Lett. 96, 032904 (2010).

    Article  Google Scholar 

  3. J. Seidel, P. Maksymovych, Y. Batra, A. Katan, S.Y. Yang, Q. He, A.P. Baddorf, S.V. Kalinin, C.-H. Yang, J.-C. Yang, Y.-H. Chu, E.K.H. Salje, H. Wormeester, M. Salmeron, and R. Ramesh, Phys. Rev. Lett. 105, 197603 (2010).

    Article  Google Scholar 

  4. M. Calleja, M.T. Dove, and E.K.H. Salje, J. Phys.: Condens. Matter 15, 2301 (2003).

    Article  Google Scholar 

  5. A. Ohtomo and H.Y. Hwang, Nature 427, 423 (2004).

    Article  Google Scholar 

  6. S.A. Pauli, S.J. Leake, B. Delley, M. Björck, C.W. Schneider, C.M. Schlepütz, D. Martoccia, S. Paetel, J. Mannhart, and P.R. Willmott, Phys. Rev. Lett. 106, 036101 (2011).

    Article  Google Scholar 

  7. M. Huijben, G. Rijnders, D.H.A. Blank, S. Bals, S. Van Aert, J. Verbeeck, G. Van Tendeloo, A. Brinkman, and H. Hilgenkamp, Nat. Mater. 5, 556 (2006).

    Article  Google Scholar 

  8. G. Herranz, M. Basletić, M. Bibes, C. Carrétéro, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzić, J.-M. Broto, A. Barthélémy, and A. Fert, Phys. Rev. Lett. 98, 216803 (2007).

    Article  Google Scholar 

  9. B. Kalisky, J.R. Kirtley, J.G. Analytis, J.-H. Chu, I.R. Fisher, and K.A. Moler, Phys. Rev. B 83, 064511 (2011).

    Article  Google Scholar 

  10. Y. Ivry, D. Chu, J.F. Scott, E.K.H. Salje, and C. Durkan, Nano Lett. 11, 4619 (2011).

    Article  Google Scholar 

  11. T. Birol, N.A. Benedek, and C.J. Fennie, Phys. Rev. Lett. 107, 257602 (2011).

    Article  Google Scholar 

  12. A. Lubk, S. Gemming, and N.A. Spaldin, Phys. Rev. B 80, 104110 (2009).

    Article  Google Scholar 

  13. T. Lottermoser and M. Fiebig, Phys. Rev. B 70, 220407 (2004).

    Article  Google Scholar 

  14. E.K.H. Salje, ChemPhysChem 11, 940 (2010).

    Article  Google Scholar 

  15. S.V. Aert, S. Turner, R. Delville, D. Schryvers, G.V. Tendeloo, and E.K.H. Salje, Adv. Mater. 24, 523 (2012).

    Article  Google Scholar 

  16. W.T. Lee, E.K.H. Salje, L. Goncalves-Ferreira, M. Daraktchiev, and U. Bismayer, Phys. Rev. B 73, 214110 (2006).

    Article  Google Scholar 

  17. X.F. Wu, K.M. Rabe, and D. Vanderbilt, Phys. Rev. B 83, 020104 (2011).

    Article  Google Scholar 

  18. J.S. Urbach, R.C. Madison, and J.T. Markert, Phys. Rev. Lett. 75, 276 (1995).

    Article  Google Scholar 

  19. K.A. Dahmen, J.P. Sethna, M.C. Kuntz, and O. Perkovic, J. Magn. Magn. Mater. 226, 1287 (2001).

    Article  Google Scholar 

  20. E. Vives, J. Ortin, L. Manosa, L. Rafols, R. Perez-Magrane, and A. Planes, Phys. Rev. Lett. 72, 1694 (1994).

    Article  Google Scholar 

  21. F.J. Perez-Reche, E. Vives, L. Manosa, and A. Planes, Phys. Rev. Lett. 87, 195701 (2001).

    Article  Google Scholar 

  22. F.J. Perez-Reche, B. Tadic, L. Manosa, A. Planes, and E. Vives, Phys. Rev. Lett. 93, 195701 (2004).

    Article  Google Scholar 

  23. F.J. Perez-Reche, F. Casanova, E. Vives, L. Manosa, A. Planes, J. Marcos, X. Batlle, and A. Labarta, Phys. Rev. B 73, 014110 (2006).

    Article  Google Scholar 

  24. M.-C. Miguel and S. Zapperi, Science 312, 1151 (2006).

    Article  Google Scholar 

  25. D.M. Dimiduk, C. Woodward, R. LeSar, and M.D. Uchic, Science 312, 1188 (2006).

    Article  Google Scholar 

  26. K.A. Dahmen, Y. Ben-Zion, and J.T. Uhl, Phys. Rev. Lett. 102, 175501 (2009).

    Article  Google Scholar 

  27. E. Salje, X. Ding, Z. Zhao, T. Lookman, and A. Saxena, Phys. Rev. B 83, 104109 (2011).

    Article  Google Scholar 

  28. X. Ding, Z. Zhao, T. Looman, A. Saxena, and E. Salje, Adv. Mater. 24, 5385 (2012).

    Article  Google Scholar 

  29. E. Salje, X. Ding, Z. Zhao, and T. Looman, Appl. Phys. Lett. 100, 222905 (2012).

    Article  Google Scholar 

  30. X. Ding, Z. Zhao, T. Looman, J. Sun, A. Saxena, and E. Salje, Phys. Rev. B, under review.

  31. E.K.H. Salje, Phase Transitions in Ferroelastic and Co-Elastic Crystals (Cambridge, UK: Cambridge University Press, 1993).

    Google Scholar 

  32. K. Bhattacharya, S. Conti, G. Zanzotto, and J. Zlmmer, Nature 428, 55 (2004).

    Article  Google Scholar 

  33. G.R. Barsch and J.A. Krumhansl, Phys. Rev. Lett. 53, 1069 (1984).

    Article  Google Scholar 

  34. J.W. Cahn, Y. Mishin, and A. Suzuki, Acta Mater. 54, 4953 (2006).

    Article  Google Scholar 

  35. Y. Mishin, A. Suzuki, B.P. Uberuaga, and A.F. Voter, Phys. Rev. B 75, 224101 (2007).

    Article  Google Scholar 

  36. D.A. Molodov, V.A. Ivanov, and G. Gottstein, Acta Mater. 55, 1843 (2007).

    Article  Google Scholar 

  37. S. Li, X. Ding, J. Li, X. Ren, J. Sun, and E. Ma, Nano Lett. 10, 1774 (2010).

    Article  Google Scholar 

  38. S. Li, X. Ding, J. Li, X. Ren, J. Sun, E. Ma, and T. Lookman, Phys. Rev. B 81, 245433 (2010).

    Article  Google Scholar 

  39. S. Li, X. Ding, J. Deng, T. Lookman, J. Li, X. Ren, J. Sun, and A. Saxena, Phys. Rev. B 82, 205435 (2010).

    Article  Google Scholar 

  40. M.C. Gallardo, J. Manchado, F.J. Romero, J.D. Cerro, E.K.H. Salje, A. Planes, E. Vives, R. Romero, and M. Stipcich, Phys. Rev. B 81, 174102 (2010).

    Article  Google Scholar 

  41. R.J. Harrison and E.K.H. Salje, Appl. Phys. Lett. 97, 021907 (2010).

    Article  Google Scholar 

  42. S. Field, J. Witt, F. Nori, and X. Ling, Phys. Rev. Lett. 74, 1206 (1995).

    Article  Google Scholar 

  43. L. Carrillo, L. Mañosa, J. Ortín, A. Planes, and E. Vives, Phys. Rev. Lett. 81, 1889 (1998).

    Article  Google Scholar 

  44. A.M. Bratkovsky, S.C. Marais, V. Heine, and E.K.H. Salje, J. Phys.: Condens. Matter 6, 3679 (1994).

    Article  Google Scholar 

  45. A.M. Bratkovsky, E.K.H. Salje, S.C. Marais, and V. Heine, Phase Transit. 48, 1 (1994).

    Article  Google Scholar 

  46. E.K.H. Salje and K. Parlinkski, Supercond. Sci. Technol. 4, 93 (1991).

    Article  Google Scholar 

  47. W.W. Schmahl, A. Putnis, E.K.H. Salje, P. Freeman, A. Graeme-Barber, R. Jones, K.K. Singh, J. Blunt, P.P. Edwards, J. Loram, and K. Mirza, Philos. Mag. Lett. 60, 241 (1989).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSFC (51171140, 51231008), the 973 Program of China (2010CB631003, 2012CB619402), 111 project (B06025), and U.S. Department of Energy at LANL (DE-AC52-06NA25396). E.K.H.S. is grateful to the Leverhulme Foundation for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, X., Lookman, T., Salje, E.K.H. et al. Twinning in Strained Ferroelastics: Microstructure and Statistics. JOM 65, 401–407 (2013). https://doi.org/10.1007/s11837-012-0529-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0529-4

Keywords

Navigation