Skip to main content
Log in

Heavy metal bioaccumulation and toxicity with special reference to microalgae

  • Review
  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

The bioaccumulation and toxicity of heavy metals were reviewed with special reference to microalgae, the key component of the food web in aquatic ecosystems. Heavy metals enter algal cells either by means of active transport or by endocytosis through chelating proteins and affect various physiological and biochemical processes of the algae. The toxicity primarily results from their binding to the sulphydryl groups in proteins or disrupting protein structure or displacing essential elements. Metals can break the oxidative balance of the algae, inducing antioxidant enzymes, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and ascorbate peroxidase (APX). The amount of oxidized proteins and lipids in the algal cells thus indicates the severity of the stress. Algal tolerance to heavy metal is highly dependent upon the defense response against the probable oxidative damages. Production of binding factors and proteins, exclusion of metals from cells by ion-selective transporters and excretion or compartmentalization have been suggested with regard to reducing heavy metal toxicity. However, a comprehensive description on the mechanisms underlining metal toxicity of microalgae and gaining tolerance is yet to be elaborated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adhiya, J., X. H. Cai, R. T. Sayre, and S. Traina, 2002. Binding of aqueous cadmium by the lyophilized biomass of Chlamy domonas reinhardtii. Colloids Surf. A Physiochem. Eng. Aspects, 210: 1–11.

    Article  Google Scholar 

  • Alia, M. P., and J. Matysik, 2001. Effect of proline on the production of singlet oxygen. Amino. Acids., 21: 195–200.

    Article  Google Scholar 

  • Atri, N., and L. C. Rai, 2003. Differential responses of three cyanobacteria to UV-B and Cd. J. Microbiol. Biotech., 13: 544–551.

    Google Scholar 

  • Avery, S. V., 2001. Metal toxicity in yeasts and the role of oxidative stress. Adv. Appl. Microbiol., 49: 111–142.

    Article  Google Scholar 

  • Bae, W., C. H. Wu, J. Kostal, A. Mulchandani, and W. Chen, 2003. Enhanced mercury biosorption by bacterial cells with surface-displayed MerR. Appl. Environ. Microbiol., 69(6): 3176–3180.

    Article  Google Scholar 

  • Bajguz, A., 2000. Blockade of heavy metals accumulation in Chlorella vulgaris cells by 24-epibrassinolide. Plant Physiol. Biochem., 38: 797–801.

    Article  Google Scholar 

  • Bishop, P. L., 2002. Pollution Prevention: Fundamentals and Practice. Tsinghua University Press, Beijing, 768pp.

    Google Scholar 

  • Cardozo, K. H. M., M. A. L. Oliveira, M. F. M. Tavares, P. Colepicolo, and E. Pinto, 2002. Daily oscillation of fatty acids and malondialdehyde in the dinoflagellate Lingulodinium polyedrum. Biol. Rhythm Res., 33: 371–381.

    Article  Google Scholar 

  • Carr, H. P., F. A. Carino, M. S. Yang, and M. H. Wong, 1998. Characterization of cadmium-binding capacity of Chlorella Vulgaris. Bull. Envion. Cantam. Toxicol., 60: 433–440.

    Article  Google Scholar 

  • Cobbett, C., and P. Goldsbrough, 2002. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Ann. Rev. Plant Biol., 53: 159–182.

    Article  Google Scholar 

  • Conner, S. D., and S. L. Schimid, 2003. Regulated portals of entry into the cell. Nature, 422: 37–44.

    Article  Google Scholar 

  • De Filippis, L. F., and C. K. Pallaghy, 1994. Heavy metals: sources and biological effects. In: Algae and Water Pollution. Rai, L. C., et al., eds., E. Schweizerbartsche Verlagsbuch-handlung, Stuttgart, 31–37.

    Google Scholar 

  • De Schamphelaere, K. A. C., F. M. Vasconncelos, D. G. Heijerick, F. M. G. Tack, K. Delbeke, H. E. Allen, et al., 2003. Development and field validation of a predictive copper toxicity model for the green alga Pseudokirchneriella subcapitata. Environ. Toxicol. Chem., 22: 2454–2465.

    Article  Google Scholar 

  • El-Enany, A. E., and A. A. Issa, 2000. Cyanobacteria as a biosorbent of heavy metals in sewage water. Environ. Toxicol. Phar., 8: 95–101.

    Article  Google Scholar 

  • El-Naggar, A. H., M. A. Osman, and E. A. El-Mohsenawy, 1999. Cobalt and lead toxicities on Calothrix fusca and Nostoc muscorum. J. Union Arab Boil. Cairo, 7: 421–441.

    Google Scholar 

  • El-Sheekl, M. M., M. E. El-Naggar, M. E. H. Osman, and E. El-Mazaly, 2003. Effect of Cobalt on growth, pigments and the photosynthetic electron transport in Monoraphdium minutum and Nitzchia perminuta. Braz. J. Plant Physiol., 15(3): 159–166.

    Google Scholar 

  • Fargasova, A., 1999. The green alga Scenedesmus quadricauda — a subject for the study of inhibitory effects of Cd, Cu, Zn, Pb and Fe. Biologia, 54: 393–398.

    Google Scholar 

  • Fathi, A. A., F. T. Zaki, and A. A. Fathy, 2000. Bioaccumulation of some heavy metals and their influence on the metabolism of Scenedesmus bijuga and Anabaena spiroides. Egypt. J. Biotech., 7: 293–307.

    Google Scholar 

  • Ferraz, A. I., T. Tavares, and J. A. Teixeira, 2004. Cr (III) removal and recovery from Saccharomyces cerevisiae. Chem. Eng. J., 105: 11–20.

    Article  Google Scholar 

  • Franklin, N. M., M. S. Adams, J. L. Stauber, and R. P. Lim, 2001. Development of a rapid enzyme inhibition bioassay with marine and freshwater microalgae using flowcytometry. Arch. Environ. Contam. Toxicol., 40: 469–480.

    Article  Google Scholar 

  • Franklin, N. M., J. L. Stauber, S. J. Markich, and R. P. Lim, 2000. pH-dependent toxicity of copper and uranium to a tropical freshwater alga (Chlorella sp.). Aquat. Toxicol., 48: 275–289.

    Article  Google Scholar 

  • Gaur, J. P., and L. C. Rai, 2001. Heavy metal tolerance in algae. In: Algal Adaptation to Environmental Stresses: Physiological, Biochemical and Molecular Mechanisms. Rai L. C., and Gaur J. P., eds., Springer-Verlag, Berlin, 363–388.

    Google Scholar 

  • Gharieb, M. M., and G. M. Gadd, 2004. Role of glutathione in detoxification of metal (loid)s by Saccharomyces cerevisiae. BioMetals, 17: 183–188.

    Article  Google Scholar 

  • Goyal, N., S. C. Jain, and U.C. Banerjee, 2003. Comparative studies on the microbial adsorption of heavy metals. Adv. Environ. Res., 7: 311–319.

    Article  Google Scholar 

  • Hassler, C. S., and K. J. Wilkinson, 2003. Failure of the biotic ligand and freeion activity models to explain zinc bioaccumulation by Chlorella kesslerii. Environ. Toxicol. Chem., 22: 620–626.

    Article  Google Scholar 

  • Heng, L.Y., K. Jusoh, C. H. M. Ling, and M. Idris, 2004. Toxicity of single and combinations of lead and cadmium to the cyanobacteria Anabaena flos-aquae. Bull. Environ. Contam. Toxicol., 72: 373–379.

    Article  Google Scholar 

  • Hu, S., K. W. K. Lau, and M. Wu, 2001. Cadmium sequestration in Chlamydomonas reinhardtii. Plant Sci., 161: 987–996.

    Article  Google Scholar 

  • Jordanova, A., A. Strezov, M. Ayranov, N. Petkov, and T. Stoilova, 1999. Heavy metal assessment in algae, sediments and water from the Bulgarian Black Sea Coast. Water Sci. Tech., 39: 207–212.

    Article  Google Scholar 

  • Kuroda, K., M. Ueda, S. Shibasaki, and A. Tanaka, 2002. Cell surface-engineered yeast with ability to bind, and self-aggregate in response to copper ion. Appl. Microbiol. Biotech., 59: 259–264.

    Article  Google Scholar 

  • Lamaia, C., M. Kruatrachuea, P. Pokethitiyooka, E. S. Upathamb, and V. Soonthornsarathoola, 2005. Toxicity and accumulation of lead and cadmium in the filamentous green alga Cladophora fracta: A laboratory study. Sci. Asia, 31: 121–127.

    Article  Google Scholar 

  • Lasheen, M. R., 1990. Effect of cadmium, copper and chromium (VI) on the growth of nile algae. Water Air Soil Poll., 50: 19–30.

    Article  Google Scholar 

  • Leborans, G. F., and A. Novillo, 1996. Toxicity and bioaccumulation of cadmium in Olishodiscus luteus (Raphidophyceae). Water Res., 30: 57–62.

    Article  Google Scholar 

  • Liberton, M., R. Howard Berg, J. Heuser, R. Roth, and H. B. Pakrasi, 2006. Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Protoplasma, 227: 129–138.

    Article  Google Scholar 

  • Liu, R. X., H. X. Tang, and W. X. Lao, 2002. Advances in biosorption mechanism and equilibrium modeling for heavy metals on biomaterials. Prog. Chem., 14: 87–92 (in Chinese).

    Google Scholar 

  • Ma, M., W. Zhu, Z. Wang, and G. J. Witkaamp, 2003. Accumulation, assimilation and growth inhibition of copper on freshwater alga (Scenedesmus subspicatus 86.81 SAG) in the presence of EDTA and fulvic acid. Aquat. Toxicol., 63: 221–228.

    Article  Google Scholar 

  • Macfarlane, G. R., and M. D. Burchett, 2001. Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the greymangrove, Avicennia marina (Forsk.) Vierh. Mar. Pollut. Bull., 42: 233–240.

    Article  Google Scholar 

  • Mehta, S. K., and J. P. Gaur, 1999. Heavy-metal-induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris. New Phytol., 143: 253–259.

    Article  Google Scholar 

  • Morlon, H., C. Fortin, C. Adam, and J. Garnier-Laplace, 2005. Cellular quotas and induced toxicity of selenite in the unicellular green alga Chlamydomonas reinhardtii. Radioprotection, 40: 101–106.

    Article  Google Scholar 

  • Okamoto, O. K., C. S. Asano, E. Aidar, and P. Colepicolo, 1996. Effects of cadmium on growth and superoxide dismutase activity of the marine microalga Tetraselmis gracilis. J. Phycol., 32: 74–79.

    Article  Google Scholar 

  • Pawlik-Skowrońska, B., 2002. Correlations between toxic Pb effects and production and production of Pb-induced thiol peptides in the microalga Stichococcus bacillaris. Environ. Pollut., 119: 119–127.

    Article  Google Scholar 

  • Pawlik-Skowrońska, B., and T. Skowroński, 2001. Freshwater algae. In: Metals in the Environment: Analysis by Biodiversity. Prasad M. N. V., ed., Marcel Dekker, New York, 59–94.

    Google Scholar 

  • Pinto, E., T. C. S. Sigaud-Kutner, M. A. S. Leitaõ, O. K. Okamoto, and D. Morse, 2003. Heavy metal-induced oxidative stress in algae. J. Phycol., 39:1008–1018.

    Article  Google Scholar 

  • Rai, P. K., N. Mallick, and L. C. Rai, 1993. Physiological and biochemical studies on an acid-tolerant Chlorella vulgaris under copper stress. J. Gen. Appl. Microbiol., 39: 529–540.

    Article  Google Scholar 

  • Rangsayatorn, N., E. S. Upatham, M. Kruatrachue, P. Pokethitiyook, and G.R. Lanza, 2002. Phytoremediation potential of Spirulina (Arthrospira) platensis: Biosorption and toxicity studies of cadmium. Environ. Pollut., 119: 45–53.

    Article  Google Scholar 

  • Sies, H., 1999. Glutathione and its role in cellular functions. Free Radic. Biol. Med., 27: 916–921.

    Article  Google Scholar 

  • Siripornadulsil, S., S. Traina, S. D. Verma, and R. T. Sayre, 2002. Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. The Plant Cell, 14: 2837–2847.

    Article  Google Scholar 

  • Stauber, J. L., and C. M. Davies, 2000. Use and limitations of microbial bioassays for assessing copper bioavailability in the aquatic environment. Environ. Rev., 8: 255–301.

    Article  Google Scholar 

  • Stauber, J. L., and T. M. Florence, 1990. Mechanism of toxicity of zinc to the marine diatom Nitzschia closterium. Mar. Biol., 105: 519–524.

    Article  Google Scholar 

  • Tripathi, B. N., A. Singh, and J. P. Gaur, 2000. Impact of heavy metal pollution on algal assemblages. Envsciences, 9: 1–7.

    Google Scholar 

  • Tripathi, B. N., and J. P. Gaur, 2006. Physiological behavior of Scenedesmus sp. during exposure to elevated levels of Cu and Zn and after withdrawal of metal stress. Protoplasma, 229: 1–9.

    Article  Google Scholar 

  • Van Ho, A., D. M. Ward, and J. Kaplan, 2002. Transition metal transport in yeast. Ann. Rev. Microbiol., 56: 237–261.

    Article  Google Scholar 

  • Verma, D. P. S., 1999. Osmotic stress tolerance in plants: Role of praline and sulfur metabolisms. In: Molecular Responses to Cold, Drought, Heat and Salt Stress in Higher Plants. Shinozaki K., and Yamaguchi-Shinozaki K., eds., R. G. Landers Company, Texas, 153–168.

    Google Scholar 

  • Vijver, M. G., C. A. M. V. Gestel, R. P. Lanno, N. M. Van Straalen, and W. J. G. M. Peijnenburg, 2004. Internal metal sequestration and its ecotoxicological relevance: a review. Environ. Sci. Technol., 38: 4705–4712.

    Article  Google Scholar 

  • Wang, J. L., 2005. Microbial cell-surface display and the application in bioremediation of contaminated environment. Chin. Biotechnol., 25: 112–117 (in Chinese).

    Google Scholar 

  • Wang, J., and C. Chen, 2006. Biosorption of heavy metals by Saccharomyces cerevisiae. Biotech. Adv., 24: 427–451.

    Article  Google Scholar 

  • Wang, J. L., 2002. Microbial Immobilization Techniques and Water Pollution Control. Science Press, Beijing, 326pp (in Chinese).

    Google Scholar 

  • Wilde, K. L., J. L. Stauber, S. J. Markich, N. M. Franklin, and P. L. Brown, 2006. The effect of pH on the uptake and toxicity of copper and zinc in a tropical freshwater alga (Chlorella sp.) Arch. Environ. Contam. Toxicol., 51: 174–185.

    Article  Google Scholar 

  • Wong, S. L., L. Nakamoto, and J. F. Wainwright, 1994. Identification of toxic metals in affected algal cells in assays of wastewaters. J. Appl. Phycol., 6: 405–414.

    Article  Google Scholar 

  • Zalups, R. K., and S. Ahmad, 2003. Molecular handling of cadmium in transporting epithelia. Toxicol. Appl. Pharmacol., 186: 163–188.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. I. U. Arunakumara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arunakumara, K.K.I.U., Zhang, X. Heavy metal bioaccumulation and toxicity with special reference to microalgae. J. Ocean Univ. China 7, 60–64 (2008). https://doi.org/10.1007/s11802-008-0060-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-008-0060-y

Key words

Navigation