Skip to main content
Log in

Ausschluss stenosierende KHK mittels Kardio-CT

Welche Bedeutung hat der CT-Befund für das Management des Patienten?

Exclusion of coronary artery disease using cardiac CT

What impact do CT results have on patient management?

  • Published:
Clinical Research in Cardiology Supplements Aims and scope

Zusammenfassung

Durch die technische Innovation der Multidetector-Head-Computertomographie (MDCT) ergeben sich neue Perspektiven für die nichtinvasive Diagnostik der koronaren Herzkrankheit (KHK).

Inzwischen ermöglichen CT-Geräte der jüngsten Generation mittels der sog. 320-Zeilen-Technologie die Abbildung des gesamten Herzens in oft ausreichender diagnostischer Qualität während eines einzigen Herzschlages.

Die kardiale Computertomographie (Kardio-CT) bietet gegenüber der Perfusionsdiagnostik mittels MRT, Szintigraphie und Echokardiographie Vorteile: mittels der CT-Koronarographie kann die Morphologie der Koronararterien direkt beurteilt werden. Die Sensitivität für Detektion einer stenosierenden KHK und der negative prädiktive Wert für kardiale Ereignisse sind mit jeweils > 96 % hoch. Anforderungen an die Patientencompliance sind gering. Die Strahlenbelastung konnte inzwischen deutlich und teilweise bis zu einem Wert von < 1 mSV gesenkt werden.

Die aktuelle Datenlage deutet daraufhin, dass für die Prüfung einer Herzkatheter (HKU)-Indikation die Kardio-CT eher geeignet ist als die Belastungsergometrie, die ihrerseits eine geringere Sensitivität von 70 % aufweist.

Die Belastungsergometrie ist seit Jahrzehnten fester Bestandteil der kardiologischen Standarddiagnostik. Hingegen stellt die Kardio-CT eine vergleichsweise junge Methode dar und wird bis auf wenige Ausnahmen vorwiegend in radiologischen Zentren angeboten. Innovative Konzepte in der Vorfelddiagnostik der KHK unter Einschluss der Kardio-CT sind zu erwarten. Einige Autoren wollen der Kardio-CT eine zentralere Rolle in der Vorfelddiagnostik der KHK zuweisen. Auf eine Fahrradergometrie ohne kombinierte Bildgebung soll hiernach ansonsten in der Vorfelddiagnostik der KHK eher verzichtet werden. Eine Magnetresonanztomografie (MRT), alternativ Szintigraphie oder Echokardiographie, jeweils in Kombination mit einem Stresstest, wird weiterhin benötigt, um die hämodynamische Relevanz einer Koronararterienstenose abzuklären.

Die Zukunft der kardialen CT im Rahmen von Change-of-Management-Konzepten ist vielversprechend. Um Entscheidungen für das Patientenmanagement auf der Basis von CT-Untersuchungen zu optimieren, ist die Kenntnis der aktuellen Datenlage sowohl für den überweisenden Kliniker als auch für die durchführende radiologische Abteilung erforderlich.

Abstract

Rapid advancement of multidetector head computed tomography (MDCT) during the past 10 years has facilitated noninvasive evaluation of CAD (coronary artery disease). Since the introduction of 320-row technology, examination of the whole heart in a single heart beat with diagnostic quality has become feasible. Direct imaging of vessel morphology, a high sensitivity for CAD above 96%, and low requirements of patient compliance represent advantages over other imaging modalities, such as MRI (magnetic resonance imaging), scintigraphy, and echocardiography. In some cases radiation exposure can be reduced to an effective dose below 1 mSV.

Current data suggest that cardiac CT represents a more effective diagnostic tool than treadmill testing in order to decide whether cardiac catheterization is indicated. Treadmill testing has been an integral procedure of cardiac examinations for decades, although sensitivity for detecting CAD is as low as 70%.

Cardiac CT represents a rather new modality and is almost exclusively performed in diagnostic imaging centers. Innovative concepts in the evaluation of CAD including CT are expected. Some authors propose cardiac CT as a major diagnostic tool for the exclusion of CAD. MRI, scintigraphy, or echocardiography in combination with a stress test remain important procedures in order to evaluate the hemodynamic relevance of coronary artery stenosis. Treadmill testing prior to cardiac CT has become questionable.

The future role of cardiac CT in CAD in “change of management” concepts is promising. In order to optimize decisions of patient management on the basis of a cardiac CT examinations, awareness of current data is mandatory for the referring clinician and the performing radiological department.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Abdulla J, Abildstrom SZ, Gotsche O, Kober L, Torp-Pedersen C (2007) 64-multislice detetctor computed tomography coronary angiography as a potential alternative to conventional coronary angiography: a systematic review. Eur Heart J 28:3042–3050

    Article  PubMed  Google Scholar 

  2. Achenbach S (2007) Cardiac CT: state of the art for the detection of coronary arterial stenosis. J Cardiovasc Comput Tomogr 1:3–20

    Article  PubMed  Google Scholar 

  3. Berman DS, Germano G, Shaw LJ (1999) The role of nuclear cardiology in clinical decision making. Semin Nucl Med 29:280–297

    Article  PubMed  CAS  Google Scholar 

  4. Brenner DJ, Hall EJ (2007) Computed tomography – an increasing source of radiation exposure. N Engl J Med 357(22):2277–2284

    Article  PubMed  CAS  Google Scholar 

  5. Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, Scherer M, Bellinger R, Martin A, Benton R, Delago A, Min JK (2008) Diagnostic performance of 64-multidetetcor row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment of Coronar Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 52:1724–1732

    Article  PubMed  Google Scholar 

  6. Budoff MJ, Hacioglu Y (2010) Coronary CT angiography offers further risk stratification in the management of patients with normal SPECT results. J Nucl Cardiol 17(1):13–15

    Article  PubMed  Google Scholar 

  7. Chest pain of recent onset: assessment and diagnosis of recent onset chest pain or discomfort of suspected cardiac origin. Full Guideline (2010) National Institute for Health and Clinical Excellence (NICE), (www.nice.org.uk). http://guidance.nice.org.uk/CG95/Guidance/pdf/English. Accessed 24 March 2010

  8. Cury RC, Magalhães TA, Borges AC, Shiozaki AA, Lemos PA, Júnior JS, Meneghetti JC, Cury RC, Rochitte CE (2010) Dipyridamole stress and rest myocardial perfusion by 64-detector row computed tomography in patients with suspected coronary artery disease. Am J Cardiol 106(3):310–315 (PubMed PMID: 20643238)

    Article  PubMed  Google Scholar 

  9. Dewey M, Hoffmann H, Hamm B (2006) Multislice CT coronary angiography: effect of sublingual nitroglycerine on the diameter of coronary arteries. Rofo 178(6):600–604 (Epub 2006 May 15)

    PubMed  CAS  Google Scholar 

  10. Dewey M, Zimmermann E, Deissenrieder F, Laule M, Dübel HP, Schlattmann P, Knebel F, Rutsch W, Hamm B (2009) Noninvasive coronary angiography by 320-row computed tomography with lower radiation exposure and maintained diagnostic accuracy: comparison of results with cardiac catheterization in a head-to-head pilot investigation. Circulation 120(10):867–875

    Article  PubMed  Google Scholar 

  11. Dietz R, Rauch B (2003) Leitlinie zur Diagnose und Behandlung der chronischen koronaren Herzerkrankung der Deutschen Gesellschaft für Kardiologie – Herz- und Kreislaufforschung (DGK). Z Kardiol 92:501–521

    PubMed  CAS  Google Scholar 

  12. d’Othée B, Siebert U, Cury R, Jadvar H, Dunn EJ, Hoffmann U (2008) A systematic review on diagnostic accuracy of CT-based detection of significant coronary artery disease. Eur J Radiol 65(3):449–461 (Epub 2007 Jun 27. Review)

    Article  Google Scholar 

  13. Flohr TG, McCollough CH, Bruder H, Petersilka M, Gruber K, Suss C, Grasruck M, Stierstorfer K, Krauss B, Raupach R, Primak AN, Kuttner A, Achenbach S, Becker C, Kopp A, Ohnesorge BM (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268

    Article  PubMed  Google Scholar 

  14. Hacioglu Y, Gupta M, Budoff MJ (2010) Noninvasive anatomical coronary artery imaging versus myocardial perfusion imaging: which confers superior diagnostic and prognostic information? J Comput Assist Tomogr 34(5):637–644 (Review)

    Article  PubMed  Google Scholar 

  15. Hausleiter J, Meyer T, Hadamitzky M, Huber E, Zankl M, Martinoff S, Kastrati A, Schomig A (2006) Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 113:1305–1310

    Article  PubMed  Google Scholar 

  16. Heuschmid M, Burgstahler C, Reimann A, Brodoefel H, Mysal I, Haeberle E, Tsiflikas I, Claussen CD, Kopp AF, Schroeder S (2007) Usefulness of noninvasive cardiac imaging using dual-source computed tomography in an unselected population with high prevalence of coronary artery disease. Am J Cardiol 100:587–592

    Article  PubMed  Google Scholar 

  17. Johnson TR, Nikolaou K, Wintersperger BJ, Leber AW, von Ziegler F, Rist C, Buhmann S, Knez A, Reiser MF, Becker CR (2006) Dual-source CT cardiac imaging: initial experience. Eur Radiol 16:1409–1415

    Article  PubMed  Google Scholar 

  18. Klass O, Walker MJ, Olszewski ME, Bahner J, Feuerlein S, Hoffmann MH, Lang A (2010) Quantification of aortic valve area at 256-slice computed tomography: comparison with transesophageal echocardiography and cardiac catheterization in subjects with high-grade aortic valve stenosis prior to percutaneous valve replacement. Eur J Radiol

  19. Klocke FJ et al (2003) ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). Circulation 108:1404–1418

    Article  PubMed  Google Scholar 

  20. Leber AW, Johnson T, Becker A, von Ziegler F, Tittus J, Nikolaou K, Reiser M, Steinbeck G, Becker CR, Knez A (2007) Diagnostic accuracy of dual-source multi-slice CT-coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease. Eur Heart J 28:2354–2360

    Article  PubMed  Google Scholar 

  21. Mark RJ, Poen J, Tran LM, Fu YS, Heaps J, Parker RG (1996) Postirradiation sarcoma of the gynecologic tract. A report of 13 cases and a discussion of the risk of radiation-induced gynecologic malignancies. Am J Clin Oncol 19(1):59–64 (PubMed PMID: 8554038)

    Article  PubMed  CAS  Google Scholar 

  22. Meijboom WB, Vanderheyden M (2002) Biventricular pacing and persistent left superior vena cava. Case report and review of the literature. Acta Cardiol 57(4):287–290 (Review)

    Article  PubMed  Google Scholar 

  23. O’Rourke RA, Brundage BH, Froelicher VF et al (2000) American College of Cardiology/American Heart Association expert consensus document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease. J Am Coll Cardiol 36:326–340

    Article  PubMed  Google Scholar 

  24. Palumbo A, Maffei E, Martini C, Messalli G, Seitun S, Malagò R, Aldrovandi A, Emiliano E, Cuttone A, Weustink A, Mollet N, Cademartiri F (2010) Functional parameters of the left ventricle: comparison of cardiac MRI and cardiac CT in a large population. Radiol Med 115(5):702–713 (Epub 2010 Feb 22. English, Italian. PubMed PMID: 20177984)

    Article  PubMed  CAS  Google Scholar 

  25. Rajiah P, Kanne JP, Kalahasti V, Schoenhagen P (2011) Computed tomography of cardiac and pericardiac masses. J Cardiovasc Comput Tomogr 5(1):16–29 (Epub 2010 Sep 9)

    Article  PubMed  Google Scholar 

  26. Silber S, Richartz BM (2005) Impact of both cardiac-CT and cardiac-MR on the assessment of coronary risk. Z Kardiol 94(Suppl 4):IV/70-80 (German)

    Article  Google Scholar 

  27. Sundaram B, Patel S, Agarwal P, Kazerooni EA (2009) Anatomy and terminology for the interpretation and reporting of cardiac MDCT: part 2, CT angiography, cardiac function assessment, and noncoronary and extracardiac findings. Am J Roentgenol 192(3):584–598

    Article  Google Scholar 

  28. Taylor AJ et al (2010) ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol 56:1864–1894

    Article  PubMed  Google Scholar 

  29. Zhang C, Zhang Z, Yan Z, Xu L, Yu W, Wang R (2010) 320-row CT coronary angiography: effect of 100-kV tube voltages on image quality, contrast volume, and radiation dose. Int J Cardiovasc Imaging

Download references

Interessenkonflikt

Die Autoren geben an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Themba Kadalie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadalie, C.T., Sternitzky, R. Ausschluss stenosierende KHK mittels Kardio-CT. Clin Res Cardiol Suppl 6 (Suppl 1), 25–31 (2011). https://doi.org/10.1007/s11789-011-0030-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11789-011-0030-6

Schlüsselwörter

Keywords

Navigation