Skip to main content
Log in

Eicosapentaenoic and docosahexaenoic acid affect mitochondrial and peroxisomal fatty acid oxidation in relation to substrate preference

  • Published:
Lipids

Abstract

Decreased triacylglycerol synthesis within hepatocytes due to decreased diacylglycerol acyltransferase (DGAT) activity has been suggested to be an important mechanism by which diets rich in fish oil lower plasma triacylglycerol levels. New findings suggest that eicosapentaenoic acid (EPA), and not docosahexaenoic acid (DHA), lowers plasma triacylglycerol by increased mitochondrial fatty acid oxidation and decreased availability of fatty acids for triacylglycerol synthesis. To contribute to the understanding of the triacylglycerol-lowering mechanism of fish oil, the different metabolic properties of EPA and DHA were studied in rat liver parenchymal cells and isolated rat liver organelles. EPA-CoA was a poorer substrate than DHA-CoA for DGAT in isolated rat liver microsomes, and in the presence of EPA, a markedly lower value for the triacyl[3H]glycerol/diacyl[3H]glycerol ratio was observed. The distribution of [1-14C]palmitic acid was shifted from incorporation into secreted glycerolipids toward oxidation in the presence of EPA (but not DHA) in rat liver parenchymal cells. [1-14C]EPA was oxidized to a much greater extent than [1-14C]DHA in rat liver parenchymal cells, isolated peroxisomes, and especially in purified mitochondria. As the oxidation of EPA was more effective and sensitive to the CPT-I inhibitor, etomoxir, when measured in a combination of both mitochondria and peroxisomes, we hypothesized that both are involved in EPA oxidation, whereas DHA mainly is oxidized in peroxisomes. In rats, EPA treatment lowered plasma triacylglycerol and increased hepatic mitochondrial fatty acid oxidation and carnitine palmitoyltransferase (CPT)-I activity in both the presence and absence of malonyl-CoA. Whereas only EPA treatment increased the mRNA levels of CPT-I, DHA treatment increased the mRNA levels of peroxisomal fatty acyl-CoA oxidase and fatty acid binding protein more effectively than EPA treatment. In conclusion, EPA and DHA affect cellular organelles in relation to their substrate preference. The present study strongly supports the hypothesis that EPA, and not DHA, lowers plasma triacylglycerol by increased mitochondrial fatty acid oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

CMC:

carboxymethyl cellulose

CPT:

carnitine palmitoyltransferase

DGAT:

diacylglycerol acyltransferase

DHA:

docosahexaenoic acid

DMEM:

Dulbecco’s modified Eagle’s medium

EPA:

eicosapentaenoic acid

FABP:

fatty acid binding protein

FAO:

fatty acyl-CoA oxidase

PPAR:

peroxisome proliferator activated receptor

References

  1. Harris, W. (1997) n−3 Fatty Acids and Serum Lipoproteins: Human Studies, Am. J. Clin. Nutr. 65, 1645S-1654S.

    PubMed  CAS  Google Scholar 

  2. Conner, S.L., and Conner, W.E. (1997) Are Fish Oils Beneficial in the Prevention and Tretment of Coronary Arterery Disease? Am. J. Clin. Nutr. 66, 1020S-1031S.

    Google Scholar 

  3. Wong, S.H., Nestel, P.J., Trimble, R.P., Stores, G.B., Illmann, R.J., and Topping, D.L. (1984) The Adaptive Effects of Dietary Fish and Safflower Oil on Lipid and Lipoprotein Metabolism in Perfused Rat Liver, Biochim. Biophys. Acta 792, 103–109.

    PubMed  CAS  Google Scholar 

  4. Nossen, J.Ø., Rustan, A.C., Gloppestad, S.H., Målbakken, S., and Drevon, C.A. (1986) Eicosapentaenoic Acid Inhibits Synthesis and Secretion of Triacylglycerols by Cultured Rat Hepatocytes, Biochim. Biophys. Acta 792, 56–65.

    Google Scholar 

  5. Rustan, A.C., Nossen, J.Ø., Christiansen, E.N., and Drevon, C.A. (1988) Eicosapentaenoic Acid Reduces Hepatic Synthesis and Secretion of Triacylglycerol by Decreasing the Activity of Acyl-Coenzyme A:1,2-Diacylglycerol Acyltransferase, J. Lipid Res. 29, 1417–1426.

    PubMed  CAS  Google Scholar 

  6. Rustan, A.C., Christiansen, E.N., and Drevon, C.A. (1992) Serum Lipids, Hepatic Glycerolipid Metabolism and Peroxisomal Fatty Acid Oxidation in Rats Fed ω-3 and ω-6 Fatty Acids, Biochem. J. 283, 333–339.

    PubMed  CAS  Google Scholar 

  7. Sebokova, E., Klimes, I., Hermann, M., Minchenko, A., Mitkova, A., and Hromadova, M. (1993) Modulation of the Hypolipidemic Effect of Fish Oil by Inhibition of Adipose Tissue Lipolysis with Acipimox, a Nicotinic Acid Analog, Ann. NY Acad. Sci. 683, 183–191.

    PubMed  CAS  Google Scholar 

  8. Brown, A.M., Baker, P.W., and Gibbons, G.F. (1997) Changes in Fatty Acid Metabolism in Rat Hepatocytes in Response to Dietary n−3 Fatty Acids Are Associated with Changes in the Intracellular Metabolism and Secretion of Apolipoprotein B-48, J. Lipid. Res. 38, 469–481.

    PubMed  CAS  Google Scholar 

  9. Harris, W., Lu, G., Rambjør, G.S., Walen, A.I., Ontko, J.A., Cheng, Q., and Windsor, S.L. (1997) Influence of n−3 Fatty Acid Supplementation on the Endogenous Activities of Plasma Lipases, Am. J. Clin. Nutr. 66, 254–260.

    PubMed  CAS  Google Scholar 

  10. Al-Shurbaji, A., Larsson-Backström, C., Berglund, L., Eggertson, E.G., and Björkhem, I. (1991) Effect of n−3 Fatty Acids on the Key Enzymes Involved in Cholesterol and Triglyceride Turnover in Rat Liver, Lipids 26, 385–389.

    PubMed  CAS  Google Scholar 

  11. Surette, M.E., Whelan, J., Broughton, K.S., and Kinsella, J.E. (1992) Evidence for Mechanisms of the Hypotriglyceridemic Effect of n−3 Polyunsaturated Fatty Acids, Biochim. Biophys. Acta 1126, 199–205.

    PubMed  CAS  Google Scholar 

  12. Willumsen, N., Skorve, J., Hexeberg, S., Rustan, A.C., and Berge, R.K. (1993) The Hypotriglyceridemic Effect of Eicosapentaenoic Acid in Rats Is Reflected in Increased Mitochondrial Fatty Acid Oxidation Followed by Diminished Lipogenesis, Lipids 28, 683–689.

    PubMed  CAS  Google Scholar 

  13. Dagnelie, P.C., Rietveld, T. Swart, G.R., Stijnen, T., and Berg, V.D. (1994) Effect of Dietary Fish Oil on Blood Levels of Free Fatty Acids, Ketone Bodies, and Triacylglycerol in Humans, Lipids 29, 41–45.

    PubMed  CAS  Google Scholar 

  14. Willumsen, N., Vaagenes, H., Asiedu, D., Lie, Ø., Rustan, A.C., and Berge, R.K. (1996) Eicosapentaenoic Acid But Not Docosahexaenoic Acid (both as ethyl esters) Increases Mitochondrial Fatty Acid Oxidation and Upregulates 2,4-Dienoyl-CoA Reductase Gene Expression. A Potential Mechanism for the Hypolipidemic Action of Fish Oil in Rats, Lipids 31, 579–592.

    Article  PubMed  CAS  Google Scholar 

  15. Frøyland, L., Madsen, L., Vaagenes, H., Totland, G.K., Auwerx, J., Kryvi, H., Staels, B., and Berge, R.K. (1997) Mitochondrion Is the Principal Target for Nutritional and Pharmacological Control of Triglyceride Metabolism, J. Lipid Res. 38, 1851–1858.

    PubMed  Google Scholar 

  16. Gibbons, G.F. (1990) Assembly and Secretion of Hepatic Very Low Density Lipoprotein, Biochem. J. 268, 1–13.

    PubMed  CAS  Google Scholar 

  17. Borén, J., Wettesten, M., Rustaeus, S., Andersson, M., and Olofsson, S.O. (1993) The Assembly and Secretion of ApoB-100 Containing Lipoproteins, Biochem. Soc. Trans. 221, 487–493.

    Google Scholar 

  18. Soutar, A. (1978) Does Dietary Fat Influence Plasma Lipoprotein Structure? Nature 273, 11–12.

    Article  PubMed  CAS  Google Scholar 

  19. Benoist, F., and Grand-Perret, T. (1996) ApoB-100 Secretion by HepG2 Cells Is Regulated by the Rate of Triglyceride Biosynthesis but Not by Intracellular Pools, Arterioscler. Thromb. Vasc. Biol. 16, 1229–1235.

    PubMed  CAS  Google Scholar 

  20. Raederstorff, D., and Moser, U. (1992) Influence of an Increased Intake of Linoleic Acid on the Incorporation of Dietary (n−3) Fatty Acids in Phospholipids and on Prostanoid Synthesis in Rat Tissues, Biochim. Biophys. Acta 1165, 194–200.

    PubMed  CAS  Google Scholar 

  21. Raclot, T., and Groscolas, R. (1993) Differential Mobilization of White Adipose Tissue Fatty Acids According to Chain Length, Unsaturation, and Positional Isomerism, J. Lipid Res. 34, 1515–1526.

    PubMed  CAS  Google Scholar 

  22. Hodge, J., Sanders, K., and Sinclair, A.J. (1993) Differential Utilization of Eicosapentaenoic Acid and Docosahexaenoic Acid in Human Plasma, Lipids 28, 525–531.

    PubMed  CAS  Google Scholar 

  23. Rambjør, G.M., Burdett, K., and Connock, M.J. (1996) Eicosapentaenoic Acid Is Primarily Responsible for Hypotriglyceridemic Effect of Fish Oil in Humans, Lipids 31, S45-S49.

    PubMed  Google Scholar 

  24. Willumsen, N., Hexeberg, S., Skorve, J., Lundquist, M., and Berge, R.K. (1993) Docosahexaenoic Acid Shows No Triglyceride-Lowering Effects but Increases the Peroxisomal Fatty Acid Oxidation in Liver of Rats, J. Lipid Res. 34, 13–22.

    PubMed  CAS  Google Scholar 

  25. Frøyland, L., Vaagenes, H., Asiedu, D., Garras, A., Lie, Ø., and Berge, R.K. (1996) Chronic Administration of Eicosapentaenoic Acid and Docosahexaenoic Acid as Ethyl Esters Reduced Plasma Cholesterol and Changed the Fatty Acid Composition in Rat Blood and Organs, Lipids 31, 169–178.

    Article  PubMed  Google Scholar 

  26. Madsen, L., Frøyland, L., Dyrøy, E., Helland, K., and Berge, R.K. (1998) Docosahexaenoic and Eicosapentaenoic Acid Are Differently Metabolized in Rat Liver During Mitochondria and Peroxisome Proliferation, J. Lipid Res. 39, 583–593.

    PubMed  CAS  Google Scholar 

  27. Hamazaki, T., Sawazaki, S., Asaoka, E., Itomura, M., Mizushima, Y., Yazawa, K., Kuwamori, T., and Kobayashi, M. (1996) Docosahexaenoic Acid-Rich Fish Oil Does Not Affect Serum Lipid Concentrations of Normolipidemic Young Adults, J. Nutr. 126, 2784–2789.

    PubMed  CAS  Google Scholar 

  28. Hirai, A., Terano, T., Makuta, H., Ozawa, A., Fujita, A., Tamura, T., and Yoshida, S. (1989) Effects of Oral Administration of Highly Purified Eicosapentaenoic Acid and Docosahexaenoic Acid on Platelet Function and Serum Lipids in Hyperlipidemic Patients, Adv. Prostaglandin Thromboxane Leukotriene Res. 19, 627–630.

    CAS  Google Scholar 

  29. Grimsgaard, S., Bønaa, K.H., Hansen, J.B., and Nordøy, A. (1997) Highly Purified Eicosapentaenoic Acid and Docosahexaenoic Acid in Humans Have Similar Triacylglycerol-Lowering Effects but Divergent Effects on Serum Fatty Acids, Am. J. Clin. Nutr. 66, 649–659.

    PubMed  CAS  Google Scholar 

  30. Grønn, M., Christensen, E., Hagve, T.A., and Christophersen, B.O. (1992) Effects of Dietary Purified Eicosapentaenoic Acid (20∶5(n−3)) and Docosahexaenoic Acid (22∶6(n−3)) on Fatty Acid Desaturation and Oxidation in Isolated Rat Liver Cell, Biochim. Biophys. Acta 1125, 35–43.

    PubMed  Google Scholar 

  31. Von Schacky, C., and Weber, P.C. (1985) Metabolism and Effects of Platlet Function of the Purified Eicosapentaenoic and Docosahexaenoic Acid in Humans, J. Clin. Invest. 76, 2446–2450.

    Article  Google Scholar 

  32. Herzberg, G.R., and Skinner, C. (1997) Differential Accumulation and Release of Long-Chain Fatty Acids from Liver, Muscle, and Adipose Tissue Triacylglycerols, Can. J. Physiol. Pharmacol. 75, 945–951.

    Article  PubMed  CAS  Google Scholar 

  33. Asiedu, D.K., Demoz, A., Skorve, J., Grav, H.J., and Berge, R.K. (1995) Acute Modulation of Rat Hepatic Lipid Metabolism by Sulphur-Substituted Fatty Acid Analogues, Biochem. Pharmacol. 49, 1013–1022.

    Article  PubMed  CAS  Google Scholar 

  34. Vaagenes, H., Madsen, L., Asiedu, D.K., Lillehaug, J.R., and Berge, R.K. (1998) Early Modulation of Genes Encoding Peroxisomal and Mitochondrial β-Oxidation Enzymes by 3-Thia Fatty Acids, Biochem. Pharmacol. 56, 1571–1582.

    Article  PubMed  CAS  Google Scholar 

  35. Spydevold, Ø., and Bremer, J. (1989) Induction of Peroxisomal β-Oxidation in 7800 C1 Morris Hepatoma Cells in Steady State by Fatty Acids and Fatty Acid Analogues, Biochim. Biophys. Acta 1003, 72–79.

    PubMed  CAS  Google Scholar 

  36. Kawaguchi, A., Tsubotani, S., Seyama, Y., Yamakawa, T., Osumi, T., Hashimoto, T., Ando, M., and Okuda, S. (1980) Stereochemistry of Dehydrogenation Catalyzed by Acyl-CoA Oxidase, J. Biochem. 88, 1481–1486.

    PubMed  CAS  Google Scholar 

  37. DeDuve, C., Pressmann, B.C., Gianetto, R., Wattiaux, R., and Applemans, F. (1955) Intracellular Distribution Patterns of Enzymes in Rat Liver Tissue, Biochem. J. 60, 604–617.

    CAS  Google Scholar 

  38. Garras, A., Asiedu, D.K., and Berge, R.K. (1995) Subcellular Localisation and Induction of NADH-Sensitive Acetyl-CoA Hydrolase and Propionyl-CoA Hydrolase Activities in Rat Liver Under Lipogenic Conditions After Treatment with Sulfur-Substituted Fatty Acids, Biochim. Biophys. Acta 1255, 154–160.

    PubMed  Google Scholar 

  39. Zammit, V.A., Corstorphine, C.G., and Kolodziej, M.P. (1989) Target Size Analysis by Radiation Inactivation of Carnitine Palmitoyltransferase Activity and Malonyl-CoA Binding in Outer Membranes from Rat Liver Mitochondria, Biochem. J. 263, 89–95.

    PubMed  CAS  Google Scholar 

  40. Bremer, J. (1981) The Effect of Fasting on the Activity of Liver Carnitine Palmitoyltransferase and Its Inhibition by Malonyl-CoA, Biochim. Biophys. Acta 665, 628–631.

    PubMed  CAS  Google Scholar 

  41. Bar-Tana, J., Rose, G., and Shapiro, B. (1971) The Purification and Properties of Microsomal Palmitoyl-Coenzyme A Synthetase, Biochem. J. 122, 353–362.

    PubMed  CAS  Google Scholar 

  42. Small, G.M., Burdett, K., and Connock, M.J. (1985) A Sensitive Spectrophotometric Assay for Peroxisomal Acyl-CoA Oxidase, Biochem. J. 227, 205–210.

    PubMed  CAS  Google Scholar 

  43. Coleman, R., and Bell, R.M. (1976) Triacylglycerol Synthesis in Isolated Fat Cells. Studies on the Microsomal Diacylglycerol Acyltransferase Activity Using Ethanol-Dispersed Diacylglycerols, J. Biol. Chem. 251, 4537–4543.

    PubMed  CAS  Google Scholar 

  44. Mavis, R.D., Bell, R.M., and Vagelos, P.R. (1972) Effect of Phospholipase C Hydrolysis of Membrane Phospholipids on Membranous Enzymes, J. Biol. Chem. 247, 2835–2841.

    PubMed  CAS  Google Scholar 

  45. Chomczynski, P., and Sacchi, N. (1987) Single-Step Method of RNA Isolation by Acid Guanidinium Thiocyanate-Phenol-Chloroform Extraction, Anal. Biochem. 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  46. Frøyland, L., Madsen, L., Sjursen, W., Garras, A., Lie, Ø., Songstad, J., Rustan, A.C., and Berge, R.K. (1997) Effect of 3-Thia Fatty Acids on the Lipid Composition of Rat Liver, Lipoproteins, and Heart, J. Lipid Res. 38, 1522–1534.

    PubMed  Google Scholar 

  47. Sambrook, J., Fritsch, E., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, pp. 86–94, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  48. Feinberg, A., and Vogelstein, P. (1983) A Technique for Radiolabeling DNA Restriction Fragments to High Specific Activity, Anal. Biochem. 132, 6–13.

    Article  PubMed  CAS  Google Scholar 

  49. Esser, V., Britton, C.H., Weis, B.C., Foster, D.W., and McGarry, J.D. (1993) Cloning, Sequencing, and Expression of a cDNA Encoding Rat Liver Carnitine Palmitoyltransferase I, J. Biol. Chem. 268, 5817–5822.

    PubMed  CAS  Google Scholar 

  50. Woeltje, K.F., Esser, V., Weis, B.C., Cox, W.F., Schroeder, J.G., Liao, S.-T., Foster, D.W., and McGarry, J.D. (1990) Intertissue and Interspecies Characteristics of the Mitochondrial Carnitine Palmitoyltransferase Enzyme System, J. Biol. Chem. 265, 10714–10719.

    PubMed  CAS  Google Scholar 

  51. Gordon, J.I., Alpers, D.H., Ockner, R.K., and Strauss, A.W. (1983) The Nucleotide Sequence of Rat Liver Fatty Acid Binding Protein mRNA, J. Biol. Chem. 258, 3356–3363.

    PubMed  CAS  Google Scholar 

  52. Miyazawa, S., Hayashi, H., Hijikata, M., Ishii, N., Furuta, S., Kagamiyama, H., Osumi, T., and Hashimoto, T. (1987) Complete Nucleotide Sequence of cDNA and Predicted Amino Acid Sequence of Rat Acyl-CoA Oxidase, J. Biol. Chem. 262, 8131–8137.

    PubMed  CAS  Google Scholar 

  53. Vassbotn, F.S., Skar, R., Holmsen, H., and Lillehaug, J.R. (1992) Absence of PDGF-Induced, PKC-Independent c-fos Expression in a Chemically Transformed C3H/10T1/2 Cel1 Clone, Exp. Cell. Res. 202, 98–104.

    Article  PubMed  CAS  Google Scholar 

  54. Berry, M.N., and Friend, D.S. (1969) High-Yield Preparation of Isolated Rat Liver Parenchymal Cells, J. Cell Biol. 43, 506–520.

    Article  PubMed  CAS  Google Scholar 

  55. Seglen, P. (1973) Preparation of Rat Liver Cells. III. Enzymatic Requirements for Tissue Dispersion, Exp. Cell Res. 82, 391–398.

    Article  PubMed  CAS  Google Scholar 

  56. Christiansen, E.N., and Davies, E.J. (1978) Measurement of Acid-Soluble Products as Indicator of Mitochondrial β-Oxidation, Biochim. Biophys. Acta 502, 17–28.

    Article  PubMed  CAS  Google Scholar 

  57. Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  58. Davies, R.A., and Boogaerts, J.R. (1982) Intrahepatic Assembly of Very Low Density Lipoproteins: Effect of Fatty Acids on Triacylglycerol and Apoprotein Synthesis, J. Biol. Chem. 257, 10908–10913.

    Google Scholar 

  59. Gibbons, G.F., Bartlett, S.M., Sparks, C.E., and Sparks, J.D. (1992) Extracellular Fatty Acids Are Not Utilized Directly for the Synthesis of Very Low Density Lipoprotein in Primary Cultures of Rat Hepatocytes, Biochem. J. 287, 749–753.

    PubMed  CAS  Google Scholar 

  60. Ikeda, I., Cha, J.Y., Yanagita, T., Nakatani, N., Oogami, K., Imaizumi, K., and Yazawa, K. (1998) Effects of Dietary Alpha-Linolenic, Eicosapentaeonic and Docosahexaenoic Acids on Hepatic Lipogenesis and Beta-Oxidation in Rats, Biosci. Biotechnol. Biochem. 62, 675–680.

    Article  PubMed  CAS  Google Scholar 

  61. Geelen, M.J., Schoots, W.J., Bijleveld, C., and Beynen, A.C. (1995) Dietary Medium-Chain Fatty Acids Raise and (n−3) Polyunsaturated Fatty Acids Lower Hepatic Triacylglycerol Synthesis in Rats, J. Nutr. 125, 2449–2456.

    PubMed  CAS  Google Scholar 

  62. Berge, R.K., and Hvattum, E. (1994) Impact of Cytochrome P450 System on Lipoprotein Metabolism. Effect of Abnormal Fatty Acids (3-thia fatty acids), Pharmacol. Ther. 61, 345–383.

    Article  PubMed  CAS  Google Scholar 

  63. Skorve, J., Ruyter, B., Rustan, A.C., Christiansen, E.N., Drevon, C. A., and Berge, R.K. (1990) Effect of 3- and 4-Thia-substituted Fatty Acids on Glycerolipid Metabolism and Mitochondrial β-Oxidation in Rat Liver, Biochem. Pharmacol. 40, 2005–2012.

    Article  PubMed  CAS  Google Scholar 

  64. Ren, B., Thelen, A.P., Peters, J.M., Gonzalez, F.J., and Jump, D.B. (1997) Polyunsaturated Fatty Acid Suppression of Hepatic Fatty Acid Synthase and S14 Gene Expression Does Not Require Peroxisome Proliferator-Activated Receptor α, J. Biol. Chem. 272, 26827–26832.

    Article  PubMed  CAS  Google Scholar 

  65. Kaikaus, R.M., Sui, Z., Lysenko, N., Yan Wu, N., Oritz de Montellano, P.R., Ockner, R.K., and Bass, N.M. (1993) Regulation of Pathways of Extramitochondrial Fatty Acid Oxidation and Liver Fatty Acid-Binding Protein by Long-Chain Monocarboxylic Fatty Acids in Hepatocytes, J. Biol. Chem. 268, 26866–26871.

    PubMed  CAS  Google Scholar 

  66. Aoyama, T., Peters, J.M., Iritani, N., Nakajima, T., Furihata, K., Hashimoto, T., and Gonzalez, F.J. (1998) Altered Constitutive Expression of Fatty Acid-Metabolizing Enzymes in Mice Lacking the Peroxisome Proliferator-Activated Receptor α (PPARα), J. Biol. Chem. 273, 5678–5684.

    Article  PubMed  CAS  Google Scholar 

  67. Chatelain, F., Kohl, C., Esser, V., McGarry, J.D., Girard, J., and Pegorier, J.-P. (1996) Cyclic AMP and Fatty Acids Increase Carnitine Palmitoyltransferase I Gene Transcription in Cultured Fetal Rat Hepatocytes, Eur. J. Biochem. 235, 789–798.

    Article  PubMed  CAS  Google Scholar 

  68. Mannaerts, G.P., Debeer, L.J., Thomas, J., and DeShepper, P.J. (1979) Mitochondrial and Peroxisomal Fatty Acid Oxidation in Liver Homogenates and Isolated Hepatocytes from Control and Clofibrate Treated Rats, J. Biol. Chem. 254, 4585–4595.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lise Madsen.

About this article

Cite this article

Madsen, L., Rustan, A.C., Vaagenes, H. et al. Eicosapentaenoic and docosahexaenoic acid affect mitochondrial and peroxisomal fatty acid oxidation in relation to substrate preference. Lipids 34, 951–963 (1999). https://doi.org/10.1007/s11745-999-0445-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-999-0445-x

Keywords

Navigation