Skip to main content
Log in

Potential of Magnetic Resonance Spectroscopy in Assessing the Effect of Fatty Acids on Inflammatory Bowel Disease in an Animal Model

  • Original Article
  • Published:
Lipids

Abstract

People with inflammatory bowel disease (IBD) are at risk for developing colorectal cancer, and this risk increases at a rate of 1% per year after 8–10 years of having the disease. Saturated and ω-6 polyunsaturated fatty acids (PUFAs) have been implicated in its causation. Conversely, ω-3 PUFAs may have the potential to confer therapeutic benefit. Since proton magnetic resonance spectroscopy (1H MRS) combined with pattern recognition methods could be a valuable adjunct to histology, the objective of this study was to analyze the potential of 1H MRS in assessing the effect of dietary fatty acids on colonic inflammation. Forty male Sprague-Dawley rats were administered one of the following dietary regimens for 2 weeks: low-fat corn oil (ω-6), high-fat corn oil (ω-6), high-fat flaxseed oil (ω-3) or high-fat beef tallow (saturated fatty acids). Half of the animals were fed 2% carrageenan to induce colonic inflammation similar to IBD. 1H MRS and histology were performed on ex vivo colonic samples, and the 1H MR spectra were analyzed using a statistical classification strategy (SCS). The histological and/or MRS studies revealed that different dietary fatty acids modulate colonic inflammation differently, with high-fat corn oil being the most inflammatory and high-fat flaxseed oil the least inflammatory. 1H MRS is capable of identifying the biochemical changes in the colonic tissue as a result of inflammation, and when combined with SCS, this technique accurately differentiated the inflamed colonic mucosa based on the severity of the inflammation. This indicates that MRS could serve as a valuable adjunct to histology in accurately assessing colonic inflammation. Our data also suggest that both the type and the amount of fatty acids in the diet are critical in modulating IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

FID:

Free induction decay

GA_ORS:

Genetic-algorithm-based optimal region selection

GC:

Gas chromatography

H&E:

Hematoxylin and eosin

HFB:

High-fat beef tallow

HFC:

High-fat corn oil

HFF:

High-fat flaxseed oil

HPLC:

High-performance liquid chromatography

HR MAS:

High-resolution magic angle spinning

IBD:

Inflammatory bowel disease

LDA:

Linear discriminant analysis

LFC:

Low-fat corn oil

LT:

Leukotriene

MRS:

Magnetic resonance spectroscopy

PAF:

Platelet activating factor

PBS/D2O:

Phosphate-buffered saline in deuterium oxide

PUFA:

Polyunsaturated fatty acids

SCS:

Statistical classification strategy

TSP:

3-Trimethylsilylpropionic acid-d4 sodium salt

Gamma:

γ

Omega:

ω

Proton:

1H

References

  1. Loftus EV (2004) Clinical epidemiology of inflammatory bowel disease: incidence, prevalence and environmental influences. Gastroenterology 126:1504–1517

    Article  PubMed  Google Scholar 

  2. Shoda R, Matsueda K, Yamato S, Umeda N (1996) Epidemiologic analysis of Crohn disease in Japan: increased dietary intake of n-6 polyunsaturated fatty acids and animal protein relates to the increased incidence of Crohn disease in Japan. Am J Clin Nutr 63:741–745

    CAS  PubMed  Google Scholar 

  3. Stenson WF, Cort D, Rodgers J, Burakoff R, DeSchryver-Kecskemeti K, Gramlich TL, Beeken W (1992) Dietary supplementation with fish oil in ulcerative colitis. Ann Intern Med 116:609–614

    CAS  PubMed  Google Scholar 

  4. Lands WE (1992) Biochemistry and physiology of n-3 fatty acids. FASEB J 6:2530–2536

    CAS  PubMed  Google Scholar 

  5. Eaden JA, Abrams KR, Mayberry JF (2001) The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut 48:526–535

    Article  CAS  PubMed  Google Scholar 

  6. Bezabeh T, Somorjai RL, Smith ICP, Nikulin AE, Dolenko B, Bernstein CN (2001) The use of 1H magnetic resonance spectroscopy in inflammatory bowel diseases: distinguishing ulcerative colitis from Crohn’s disease. Am J Gastroenterol 96:442–448

    Article  CAS  PubMed  Google Scholar 

  7. Varma S, Bird R, Eskin M, Dolenko B, Raju J, Bezabeh T (2007) Detection of inflammatory bowel disease by proton magnetic resonance spectroscopy (1H MRS) using an animal model. J Inflamm (Lond) 4:24

    Article  Google Scholar 

  8. Kriat M, Vion-Dury J, Confort-Gouny S, Favre R, Viout P, Sciaky M, Sari H, Cozzone PJ (1993) Analysis of plasma lipids by NMR spectroscopy: application to modifications induced by malignant tumors. J Lipid Res 34:1009–1019

    CAS  PubMed  Google Scholar 

  9. Adosraku RK, Choi GT, Constantinou-Kokotos V, Anderson MM, Gibbons WA (1994) NMR lipid profiles of cells, tissues, and body fluids: proton NMR analysis of human erythrocyte lipids. J Lipid Res 35:1925–1931

    CAS  PubMed  Google Scholar 

  10. Singer S, Sivaraja M, Souza K, Millis K, Corson JM (1996) 1H-NMR detectable fatty acyl chain unsaturation in excised leiomyosarcoma correlate with grade and mitotic activity. J Clin Invest 98:244–250

    Article  CAS  PubMed  Google Scholar 

  11. Gunstone FD (1994) High resolution 13C NMR. A technique for the study of lipid structure and composition. Prog Lipid Res 33:19–28

    Article  CAS  PubMed  Google Scholar 

  12. Martin FP, Wang Y, Sprenger N, Holmes E, Lindon JC, Kochhar S, Nicholson JK (2007) Effects of probiotic Lactobacillus paracasei treatment on the host gut tissue metabolic profiles probed via magic-angle-spinning NMR spectroscopy. J Proteome Res 6:1471–1481

    Article  CAS  PubMed  Google Scholar 

  13. Sands CJ, Coen M, Maher AD, Ebbels TM, Holmes E, Lindon JC, Nicholson JK (2009) Statistical total correlation spectroscopy editing of 1H NMR spectra of biofluids: application to drug metabolite profile identification and enhanced information recovery. Anal Chem 81:6458–6466

    Article  CAS  PubMed  Google Scholar 

  14. Bjerrum JT, Nielsen OH, Hao F, Tang H, Nicholson JK, Wang Y, Olsen J (2010) Metabonomics in ulcerative colitis: diagnostics, biomarker identification, and insight into the pathophysiology. J Proteome Res 9:954–962

    Article  CAS  PubMed  Google Scholar 

  15. Nikulin AE, Dolenko B, Bezabeh T, Somorjai RL (1998) Near-optimal region selection for feature space reduction: novel preprocessing methods for classifying MR spectra. NMR Biomed 11:209–217

    Article  CAS  PubMed  Google Scholar 

  16. Somorjai RL, Alexander M, Baumgartner R, Booth S, Bowman C, Demko A, Dolenko B, Mandelzweig M, Nikulin AE, Pizzi N, Pranckeviciene E, Summers R, Zhilkin P (2004) A data-driven, flexible machine learning strategy for the classification of biomedical data. In: Azuaje F, Dubitsky W (eds) Computational biology, vol 5: artificial intelligence methods and tools for systems biology. Kluwer Academic Publishers, Boston, pp 67–85

    Google Scholar 

  17. Briere KM, Kuesel AC, Bird RP, Smith ICP (1995) 1H MR visible lipids in colon tissue from normal and carcinogen-treated rats. NMR Biomed 8:33–40

    Article  CAS  PubMed  Google Scholar 

  18. Kuesel AC, Kroft T, Saunders JK, Prefontaine M, Mikhael N, Smith ICP (1992) A simple procedure for obtaining high-quality NMR spectra of semiquantitative value from small tissue specimens: cervical biopsies. Magn Reson Med 27:349–355

    Article  CAS  PubMed  Google Scholar 

  19. AOCS Official Method Ce 1–62. (1998) Fatty acid composition by packed column gas chromatography, American Oil Chemist’s Society—official methods and recommended protocols. AOCS Press, Champaign

    Google Scholar 

  20. Righi V, Durante C, Cocchi M, Calabrese C, Di Febo G, Lecce F, Pisi A, Tugnoli V, Mucci A, Schenetti L (2009) Discrimination of healthy and neoplastic human colon tissues by ex vivo HR-MAS NMR spectroscopy and chemometric analyses. J Proteome Res 8:1859–1869

    Article  CAS  PubMed  Google Scholar 

  21. Lean CL, Newland RC, Ende DA, Bokey EL, Smith ICP, Mountford CE (1993) Assessment of human colorectal biopsies by 1H MRS: correlation with histopathology. Magn Reson Med 30:525–533

    Article  CAS  PubMed  Google Scholar 

  22. Smith ICP, Blandford DE (1998) Diagnosis of cancer in humans by 1H NMR of tissue biopsies. Biochem Cell Biol 76:472–476

    Article  CAS  PubMed  Google Scholar 

  23. Bezabeh T, Smith ICP, Krupnik E, Somorjai RL, Kitchen DG, Bernstein CN, Pettigrew NM, Bird RP, Lewin KJ, Briere KM (1996) Diagnostic potential for cancer via 1H magnetic resonance spectroscopy of colon tissue. Anticancer Res 16:1553–1558

    CAS  PubMed  Google Scholar 

  24. Ende D, Rutter A, Russell P, Mountford CE (1996) Chemical shift imaging of human colorectal tissue (ex vivo). NMR Biomed 9:179–183

    Article  CAS  PubMed  Google Scholar 

  25. Jockers-Wretou E, Giebel W, Pfleiderer G (1977) Immunohistochemical localization of creatinkinase isoenzymes in human tissue. Histochemistry 54:83–95

    Article  CAS  PubMed  Google Scholar 

  26. Graeber GM, Cafferty PJ, Wolf RE, Harmon JW (1984) An analysis of creatine phosphokinase in the mucosa and the muscularis of the gastrointestinal tract. J Surg Res 37:376–382

    Article  CAS  PubMed  Google Scholar 

  27. Clandinin MT, Cheema S, Field CJ, Garg ML, Venkatraman J, Clandinin TR (1991) Dietary fat: exogenous determination of membrane structure and cell function. FASEB J 5:2761–2769

    CAS  PubMed  Google Scholar 

  28. Simopoulos AP (2002) Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 21:495–505

    CAS  PubMed  Google Scholar 

  29. Nishida T, Miwa H, Shigematsu A, Yamamoto M, Iida M, Fujishima M (1987) Increased arachidonic acid composition of phospholipids in colonic mucosa from patients with active ulcerative colitis. Gut 28:1002–1007

    Article  CAS  PubMed  Google Scholar 

  30. Nieto N, Giron MD, Suarez MD, Gil A (1998) Changes in plasma and colonic mucosa fatty acid profiles in rats with ulcerative colitis induced by trinitrobenzene sulfonic acid. Dig Dis Sci 43:2688–2695

    Article  CAS  PubMed  Google Scholar 

  31. Rashid A, Pizer ES, Moga M, Milgraum LZ, Zahurak M, Pasternack GR, Kuhajda FP, Hamilton SR (1997) Elevated expression of fatty acid synthase and fatty acid synthetic activity in colorectal neoplasia. Am J Pathol 150:201–208

    CAS  PubMed  Google Scholar 

  32. Robblee NM, Farnworth ER, Bird RP (1998) Phospholipid profile and production of prostanoids by murine colonic epithelium: effect of dietary fat. Lipids 23:334–339

    Article  Google Scholar 

  33. Robblee NM, Bird RP (1994) Effects of high corn oil diet on preneoplastic murine colons: prostanoid production and lipid composition. Lipids 29:67–71

    Article  CAS  PubMed  Google Scholar 

  34. Hawthorne AB, Daneshmend TK, Hawkey CJ, Belluzzi A, Everitt SJ, Holmes GK, Malkinson C, Shaheen MZ, Willars JE (1992) Treatment of ulcerative colitis with fish oil supplementation: a prospective 12 month randomised controlled trial. Gut 33:922–928

    Article  CAS  PubMed  Google Scholar 

  35. Bartolí R, Fernández-Bañares F, Navarro E, Castellà E, Mañé J, Alvarez M, Pastor C, Cabré E, Gassull MA (2000) Effect of olive oil on early and late events of colon carcinogenesis in rats: modulation of arachidonic acid metabolism and local prostaglandin E(2) synthesis. Gut 46:191–199

    Article  PubMed  Google Scholar 

  36. James LA, Lunn PG, Elia M (1998) Glutamine metabolism in the gastrointestinal tract of the rat assess by the relative activities of glutaminase (EC 3.5.1.2) and glutamine synthetase (EC 6.3.1.2). Br J Nutr 79:365–372

    Article  CAS  PubMed  Google Scholar 

  37. James LA, Lunn PG, Middleton S, Elia M (1998) Distribution of glutaminase and glutamine synthetase activities in the human gastrointestinal tract. Clin Sci 94:313–319

    CAS  PubMed  Google Scholar 

  38. Giaroni C, Zanetti E, Chiaravalli AM, Albarello L, Dominioni L, Capella C, Lecchini S, Frigo G (2003) Evidence for a glutamatergic modulation of the cholinergic function in the human enteric nervous system via NMDA receptors. Eur J Pharmacol 476:63–69

    Article  CAS  PubMed  Google Scholar 

  39. Wang FY, Zhu RM, Maemura K, Hirata I, Katsu K, Watanabe M (2006) Expression of gamma-aminobutyric acid and glutamic acid decarboxylases in rat descending colon and their relation to epithelial differentiation. Chin J Dig Dis 7:103–108

    Article  CAS  PubMed  Google Scholar 

  40. Cullis PR, Hope MJ (1992) Physical properties and functional roles of lipids in membranes. In: Vance DE (ed) Biochemistry of lipids, lipoproteins and membranes. Elsevier Science publishers, Amsterdam, pp 1–41

    Google Scholar 

  41. White DA (1973) The phospholipid composition of mammalian tissue. In: Ansell GB, Hawthorne JN, Dawson RMC (eds) Form and function of phospholipids. Elsevier Scienctific publishing Co, Amsterdam, pp 441–482

    Google Scholar 

  42. Snyder F (1997) CDP-choline:alkylacetylglycerol cholinephosphotransferase catalyzes the final step in the de novo synthesis of platelet-activating factor. Biochim Biophys Acta 4(1348):111–116

    Google Scholar 

  43. Henneberry AL, Wistow G, McMaster CR (2000) Cloning, genomic organization, and characterization of a human cholinephosphotransferase. J Biol Chem 275:29808–29815

    Article  CAS  PubMed  Google Scholar 

  44. Thyssen E, Turk J, Bohrer A, Stenson WF (1996) Quantification of distinct molecular species of platelet activating factor in ulcerative colitis. Lipids 31:255–259

    Article  Google Scholar 

  45. Hocke M, Richter L, Bosseckert H, Eitner K (1999) Platelet activating factor in stool from patients with ulcerative colitis and Crohn’s disease. Hepatogastroenterology 46:2333–2337

    CAS  PubMed  Google Scholar 

  46. Sharma U, Singh RR, Ahuja V, Makharia GK, Jagannathan NR (2010) Similarity in the metabolic profile in macroscopically involved and un-involved colonic mucosa in patients with inflammatory bowel disease: an in vitro proton (1H) MR spectroscopy study. Magn Reson Imaging 28:1022–1029

    Article  PubMed  Google Scholar 

  47. Balasubramanian K, Kumar S, Singh RR, Sharma U, Ahuja V, Makharia GK, Jagannathan NR (2009) Metabolism of the colonic mucosa in patients with inflammatory bowel diseases: an in vitro proton magnetic resonance spectroscopy study. Magn Reson Imaging 27:79–86

    Article  CAS  PubMed  Google Scholar 

  48. Bamba T, Shimoyama T, Sasaki M, Tsujikawa T, Fukuda Y, Koganei K, Hibi T, Iwao Y, Munakata A, Fukuda S, Matsumoto T, Oshitani N, Hiwatashi N, Oriuchi T, Kitahora T, Utsunomiya T, Saitoh Y, Suzuki Y, Nakajima M (2003) Dietary fat attenuates the benefits of an elemental diet in active Crohn’s disease: a randomized, controlled trial. Eur J Gastroenterol Hepatol 15:151–157

    Article  CAS  PubMed  Google Scholar 

  49. Reddy BS, Narisawa T, Vukusich D, Weisburger JH, Wynder EL (1976) Effect of quality and quantity of dietary fat and dimethylhydrazine in colon carcinogenesis in rats. Proc Soc Exp Biol Med 151:237–239

    CAS  PubMed  Google Scholar 

  50. Rao CV, Hirose Y, Indranie C, Reddy BS (2001) Modulation of experimental colon tumorigenesis by types and amounts of dietary fatty acids. Cancer Res 61:1927–1933

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Saro Bascaramurty, who was the key resource for tissue sectioning and staining for histological assessment. We thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for the strategic project grant to R.P. Bird, M. Eskin and T. Bezabeh.

Conflict of interest

There are no conflicts of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tedros Bezabeh.

About this article

Cite this article

Varma, S., Eskin, M.N.A., Bird, R. et al. Potential of Magnetic Resonance Spectroscopy in Assessing the Effect of Fatty Acids on Inflammatory Bowel Disease in an Animal Model. Lipids 45, 843–854 (2010). https://doi.org/10.1007/s11745-010-3455-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-010-3455-7

Keywords

Navigation