Skip to main content
Log in

Simple Methods to Detect Triacylglycerol Biosynthesis in a Yeast-Based Recombinant System

  • Methods
  • Published:
Lipids

Abstract

Standard methods to quantify the activity of triacylglycerol (TAG) synthesizing enzymes DGAT and PDAT (TAG-SE) require a sensitive but rather arduous laboratory assay based on radio-labeled substrates. Here we describe two straightforward methods to detect TAG production in baker’s yeast Saccharomyces cerevisiae. First we demonstrate that a quadruple knockout yeast strain deficient in storage lipids has a reduced growth rate in a medium supplemented with fatty acids. This phenotype is rescued by restoring TAG biosynthesis and can be thus used to select yeast cells expressing a recombinant TAG-SE. In the second method, the activity of the recombinant enzyme is measured in a fluorescent in situ assay using Nile red dye that is specific for neutral lipids. Correlation between Nile red fluorescence and enzyme activity is demonstrated with several mutants of a TAG synthesizing enzyme. This yeast live-cell-based assay is rapid, inexpensive, sensitive, and is amenable to high-throughput applications. The methods can be used for a variety of applications such as isolation of novel genes, directed evolution, gene-specific drug screening and will facilitate novel approaches in the research of TAG-SE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BnDGAT1 :

Brassica napus DGAT1

DGAT:

Acyl-CoA:diacylglycerol acyltransferase

FA:

Fatty acids

FACS:

Fluorescence-activated cell sorting

LuDGAT1 :

Linum usitatissimum DGAT1

NRA:

Nile red assay

OD:

Optical density

PDAT:

Phospholipid:diacylglycerol acyltransferase

RcDGAT1 :

Ricinus communis DGAT1

TAG:

Triacylglycerol

TLC:

Thin layer chromatography

TAG-SE:

TAG synthesizing enzymes

References

  1. Farese RV, Cases S, Smith SJ (2000) Triglyceride synthesis: insights from the cloning of diacylglycerol acyltransferase. Curr Opin Lipidol 11:229–234

    Article  CAS  PubMed  Google Scholar 

  2. Metzger JO, Bornscheuer U (2006) Lipids as renewable resources: current state of chemical and biotechnological conversion and diversification. Appl Microbiol Biotechnol 71:13–22

    Article  CAS  PubMed  Google Scholar 

  3. Vasudevan PT, Briggs M (2008) Biodiesel production—current state of the art and challenges. J Ind Microbiol Biotechnol 35:421–430

    Article  CAS  PubMed  Google Scholar 

  4. Lardizabal K, Effertz R, Levering C, Mai J, Pedroso MC, Jury T, Aasen E, Gruys K, Bennett K (2008) Expression of Umbelopsis ramanniana DGAT2A in seed increases oil in soybean. Plant Physiol 148:89–96

    Article  CAS  PubMed  Google Scholar 

  5. Weselake R (2002) Biochemistry and biotechnology of TAG accumulation in plants. In: Gardner HW, Kuo TM (eds) Lipid biotechnology. Marcel Dekker, Peoria

    Google Scholar 

  6. Weselake RJ, Taylor DC, Shah S, Laroche A, Harwood J (2009) Molecular strategies for increasing seed oil content. In: Hou CT, Shaw JF (eds) Biocatalysis and agricultural biotechnology. Taylor and Francis-CRC Press, Boca Raton

    Google Scholar 

  7. Lehner R, Kuksis A (1996) Biosynthesis of triacylglycerols. Prog Lipid Res 35:169–201

    Article  CAS  PubMed  Google Scholar 

  8. Yen CL, Stone SJ, Koliwad S, Harris C, Farese RV (2008) DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res 49:2283–2301

    Article  CAS  PubMed  Google Scholar 

  9. Lung SC, Weselake RJ (2006) Diacylglycerol acyltransferase: a key mediator of plant triacylglycerol synthesis. Lipids 41:1073–1088

    Article  CAS  PubMed  Google Scholar 

  10. Cases S, Smith SJ, Zheng YW, Myers HM, Lear SR, Sande E, Novak S, Collins C, Welch CB, Lusis AJ, Erickson SK, Farese RV (1998) Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci USA 95:13018–13023

    Article  CAS  PubMed  Google Scholar 

  11. Hobbs DH, Lu CF, Hills MJ (1999) Cloning of a cDNA encoding diacylglycerol acyltransferase from Arabidopsis thaliana and its functional expression. FEBS Lett 452:145–149

    Article  CAS  PubMed  Google Scholar 

  12. Lardizabal KD, Mai JT, Wagner NW, Wyrick A, Voelker T, Hawkins DJ (2001) DGAT2 is a new diacylglycerol acyltransferase gene family. J Biol Chem 276:38862–38869

    Article  CAS  PubMed  Google Scholar 

  13. Cases S, Stone SJ, Zhou P, Yen E, Tow B, Lardizabal KD, Voelker T, Farese RV (2001) Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. J Biol Chem 276:38870–38876

    Article  CAS  PubMed  Google Scholar 

  14. Shockey JM, Gidda SK, Chapital DC, Kuan JC, Dhanoa PK, Bland JM, Rothstein SJ, Mullen RT, Dyer JM (2006) Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. Plant Cell 18:2294–2313

    Article  CAS  PubMed  Google Scholar 

  15. Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA 97:6487–6492

    Article  CAS  PubMed  Google Scholar 

  16. Stahl U, Carlsson AS, Lenman M, Dahlqvist A, Huang BQ, Banas W, Banas A, Stymne S (2004) Cloning and functional characterization of a phospholipid:diacylglycerol acyltransferase from Arabidopsis. Plant Physiol 135:1324–1335

    Article  CAS  PubMed  Google Scholar 

  17. Mhaske V, Beldjilali K, Ohlrogge J, Pollard M (2005) Isolation and characterization of an Arabidopsis thaliana knockout line for phospholipid: diacylglycerol transacylase gene (At5g13640). Plant Physiol Biochem 43:413–417

    CAS  PubMed  Google Scholar 

  18. Sandager L, Gustavsson MH, Stahl U, Dahlqvist A, Wiberg E, Banas A, Lenman M, Ronne H, Stymne S (2002) Storage lipid synthesis is non-essential in yeast. J Biol Chem 277:6478–6482

    Article  CAS  PubMed  Google Scholar 

  19. Coleman RA (1992) Diacylglycerol acyltransferase and monoacylglycerol acyltransferase from liver and intestine. Meth Enzymol 209:98–104

    Article  CAS  PubMed  Google Scholar 

  20. Greenspan P, Mayer EP, Fowler SD (1985) Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100:965–973

    Article  CAS  PubMed  Google Scholar 

  21. Siloto RMP, Truksa M, Brownfield D, Good AG, Weselake RJ (2009) Directed evolution of acyl-CoA:diacylglycerol acyltransferase: development and characterization of Brassica napus DGAT1 mutagenized libraries. Plant Physiol Biochem 47:456–461

    Article  CAS  PubMed  Google Scholar 

  22. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34

    Article  CAS  PubMed  Google Scholar 

  23. He XH, Turner C, Chen GQ, Lin JT, Mckeon TA (2004) Cloning and characterization of a cDNA encoding diacylglycerol acyltransferase from castor bean. Lipids 39:311–318

    Article  CAS  PubMed  Google Scholar 

  24. Byers SD, Laroche A, Smith KC, Weselake RJ (1999) Factors enhancing diacylglycerol acyltransferase activity in microsomes from cell-suspension cultures of oilseed rape. Lipids 34:1143–1149

    Article  CAS  PubMed  Google Scholar 

  25. West RW, Yocum RR, Ptashne M (1984) Saccharomyces cerevisiae GAL1-GAL10 divergent promoter region: location and function of the upstream activating sequence UASG. Mol Cell Biol 4:2467–2478

    CAS  PubMed  Google Scholar 

  26. Johnston M (1987) A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiol Rev 51:458–476

    CAS  PubMed  Google Scholar 

  27. Perry HJ, Harwood JL (1993) Changes in the lipid-content of developing seeds of Brassica napus. Phytochemistry 32:1411–1415

    Article  CAS  Google Scholar 

  28. Katavic V, Reed DW, Taylor DC, Giblin EM, Barton DL, Zou JT, Mackenzie SL, Covello PS, Kunst L (1995) Alteration of seed fatty-acid composition by an ethyl methanesulfonate-induced mutation in Arabidopsis thaliana affecting diacylglycerol acyltransferase activity. Plant Physiol 108:399–409

    Article  CAS  PubMed  Google Scholar 

  29. Zou JT, Wei YD, Jako C, Kumar A, Selvaraj G, Taylor DC (1999) The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. Plant J 19:645–653

    Article  CAS  PubMed  Google Scholar 

  30. Zheng P, Allen WB, Roesler K, Williams ME, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong GY, Tarczynski MC, Shen B (2008) A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet 40:367–372

    Article  CAS  PubMed  Google Scholar 

  31. Cahoon EB, Shockey JM, Dietrich CR, Gidda SK, Mullen RT, Dyer JM (2007) Engineering oilseeds for sustainable production of industrial and nutritional feedstocks: solving bottlenecks in fatty acid flux. Curr Opin Plant Biol 10:236–244

    Article  CAS  PubMed  Google Scholar 

  32. Tomoda H, Omura S (2007) Potential therapeutics for obesity and atherosclerosis: inhibitors of neutral lipid metabolism from microorganisms. Pharmacol Ther 115:375–389

    Article  CAS  PubMed  Google Scholar 

  33. Kimura K, Yamaoka M, Kamisaka Y (2004) Rapid estimation of lipids in oleaginous fungi and yeasts using Nile red fluorescence. J Microbiol Methods 56:331–338

    Article  CAS  PubMed  Google Scholar 

  34. Cadigan KM, Chang CCY, Chang TY (1989) Isolation of Chinese-hamster ovary cell-lines expressing human acyl-coenzyme-a cholesterol acyltransferase activity. J Cell Biol 108:2201–2210

    Article  CAS  PubMed  Google Scholar 

  35. Seethala R, Peterson T, Dong J, Chu CH, Chen L, Golla R, Ma Z, Panemangalore R, Lawrence RM, Cheng D (2008) A simple homogeneous scintillation proximity assay for acyl-coenzyme A:diacylglycerol acyltransferase. Anal Biochem 383:144–150

    Article  CAS  PubMed  Google Scholar 

  36. Tao HY, Cornish VW (2002) Milestones in directed enzyme evolution. Curr Opin Chem Biol 6:858–864

    Article  CAS  PubMed  Google Scholar 

  37. Stone SJ, Levin MC, Farese RV (2006) Membrane topology and identification of key functional amino acid residues of murine Acyl-CoA:diacylglycerol acyltransferase-2. J Biol Chem 281:40273–40282

    Article  CAS  PubMed  Google Scholar 

  38. Xu JY, Francis T, Mietkiewska E, Giblin EM, Barton DL, Zhang Y, Zhang M, Taylor DC (2008) Cloning and characterization of an acyl-CoA-dependent diacylglycerol acyltransferase 1 (DGAT1) gene from Tropaeolum majus, and a study of the functional motifs of the DGAT protein using site-directed mutagenesis to modify enzyme activity and oil content. Plant Biotech J 6:799–818

    Article  CAS  Google Scholar 

  39. Edwards C, Porter J, West M (1997) Fluorescent probes for measuring physiological fitness of yeast. Ferment 9:288–293

    Google Scholar 

  40. Deere D, Shen J, Vesey G, Bell P, Bissinger P, Veal D (1998) Flow cytometry and cell sorting for yeast viability assessment and cell selection. Yeast 14:147–160

    Article  CAS  PubMed  Google Scholar 

  41. Muller S, Losche A (2004) Population profiles of a commercial yeast strain in the course of brewing. J Food Eng 63:375–381

    Article  Google Scholar 

  42. Faergeman NJ, DiRusso CC, Elberger A, Knudsen J, Black PN (1997) Disruption of the Saccharomyces cerevisiae homologue to the murine fatty acid transport protein impairs uptake and growth on long-chain fatty acids. J Biol Chem 272:8531–8538

    Article  CAS  PubMed  Google Scholar 

  43. Faergeman NJ, Black PN, Zhao XD, Knudsen J, DiRusso CC (2001) The acyl-CoA synthetases encoded within FAA1 and FAA4 in Saccharomyces cerevisiae function as components of the fatty acid transport system linking import, activation, and intracellular utilization. J Biol Chem 276:37051–37059

    Article  CAS  PubMed  Google Scholar 

  44. Carlson M (1999) Glucose repression in yeast. Curr Opin Microbiol 2:202–207

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Q, Chieu HK, Low CP, Zhang SC, Heng CK, Yang HY (2003) Schizosaccharomyces pombe cells deficient in triacylglycerols synthesis undergo apoptosis upon entry into the stationary phase. J Biol Chem 278:47145–47155

    Article  CAS  PubMed  Google Scholar 

  46. Carrasco S, Merida I (2008) Diacylglycerol, when simplicity becomes complex. Trends Biochem Sci 32:27–36

    Article  Google Scholar 

Download references

Acknowledgments

We thank S. Stymne and U. Ståhl for providing the yeast strain H1246 and the corresponding parental line and C. Snyder for reviewing the manuscript. This research was supported by AVAC Ltd., the Natural Science and Engineering Research Council of Canada and the Canada Research Chairs Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall J. Weselake.

Additional information

R. M. P. Siloto and M. Truksa have contributed equally to this work and should be both regarded as the first author.

About this article

Cite this article

Siloto, R.M.P., Truksa, M., He, X. et al. Simple Methods to Detect Triacylglycerol Biosynthesis in a Yeast-Based Recombinant System. Lipids 44, 963–973 (2009). https://doi.org/10.1007/s11745-009-3336-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-009-3336-0

Keywords

Navigation