Skip to main content
Log in

Assessment of dietary and genetic factors influencing serum and adipose fatty acid composition in obese female identical twins

  • Articles
  • Published:
Lipids

Abstract

Fourteen pairs of obese female monozygotic twins were recruited for a study of genetic influences on serum and adipose fatty acid (FA) composition. Following 1 wk of inpatient stabilization, fasting serum and adipose tissue obtained by surgical excision were analyzed by thin-layer and gas chromatography. Intrapair resemblances (IPR) for individual FA were assessed by Spearman rank correlation and by analysis of variance and were found in serum cholesteryl esters (CE), triglycerides (TG), and adipose TG. With two exceptions (CE linoleate and adipose eicosapentaenoate), these IPR were limited to the nonessential FA. Palmitate had significant IPR in four lipid fractions; in serum CE and adipose TG palmitate was strongly correlated with multiple measures of adiposity. In contrast to other lipid fractions, serum phosphatidylcholine (PC) FA had 12 IPR, of which 6 were essential FA including arachidonate (r=0.76, P<0.0005), eicosapentaenoate (r=0.78, P<0.0005), and docosahexaenoate (r=0.86, P<0.0001). The PC IPR could not be explained by analysis of preadmission 7-d food records. After dividing the pairs into two groups differing and nondiffering according to fat intake of individuals in the pair, there was no evidence of a gene-environment interaction between fat intake and FA composition. The IPR for nonessential FA indicate that there is active genetic control of either food choices or postabsorptive metabolic processing. The high level of IPR in the PC fraction in contrast to the other lipid fractions suggests strong genetic influence over selection of specific FA for this membrane fraction independent of diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AT:

adipose tissue

CE:

cholesteryl esters

FA:

fatty acid(s)

FAME:

fatty acid methyl esters

GC:

gas chromatography

IPR:

intra-pair resemblance

PC:

phosphatidylcholine

TG:

triglycerides

References

  1. Raclot, T., and Groscolas, R. (1993) Differential Mobilization of White Adipose Tissue Fatty Acids According to Chain Length, Unsaturation, and Positional Isomerism, J. Lipid Res. 34, 1515–1526.

    PubMed  CAS  Google Scholar 

  2. Raclot, T., Mioskowski, E., Bach, A.C., and Groscolas, R. (1995) Selectivity of Fatty Acid Mobilization: A General Feature of Adipose Tissue, Am. J. Physiol. 296, R1060-R1067.

    Google Scholar 

  3. Phinney, S.D., Tang, A.B., Johnson, S.B., and Holman, R.T. (1990) Reduced Adipose 18∶3 ω3 with Weight Loss by Very Low Calorie Dieting, Lipids 25, 798–806.

    PubMed  CAS  Google Scholar 

  4. Hudgins, L.C., and Hirsch, J. (1991) Changes in Abdominal and Gluteal Adipose Tissue Fatty Acid Compositions in Obese Subjects After Weight Gain and Weight Loss, Am. J. Clin. Nutr. 53, 1372–1377.

    PubMed  CAS  Google Scholar 

  5. Tang, A.B., Nishimura, K.Y., and Phinney, S.D. (1992) Preferential Reduction in Adipose Tissue α-Linolenic Acid(18∶3ω3) During Very Low Calorie Dieting Despite Supplementation with 18∶3ω3, Lipids 28, 987–993.

    Google Scholar 

  6. Summers, L.K.M., Barnes, C., Fielding, B.A., Beysen, C., Ilie, V., Humpreys, S.M., and Fray, K.N. (2000) Uptake of Individual Fatty Acids into Adipose Tissue in Relation to Their Presence in the Diet, Am. J. Clin. Nutr. 71, 1470–1477.

    PubMed  CAS  Google Scholar 

  7. Odin, R.S., Finke, B.A., Blake, W.L., Phinney, S.D., and Clarke, S.D. (1987) Modification of Fatty Acid Composition of Membrane Phospholipid in Hepatocyte Monolayer with n−3, n−6, and n−9 Fatty Acids and Its Relationship to Triacylglycerol Production, Biochim. Biophys. Acta 921, 378–391.

    Google Scholar 

  8. Clarke, S.D., and Jump, D.B. (1994) Dietary Polyunsaturated Fatty Acid Regulation of Gene Transcription, Annu. Rev. Nutr. 14, 83–98.

    Article  PubMed  CAS  Google Scholar 

  9. Pelikánová, T., Kouhout, M., Válek, J., Baše, J., and Kazdová, L. (1989) Insulin Secretion and Insulin Action Related to the Serum Phospholipid Fatty Acid Pattern in Healthy Men, Metabolism 38, 188–192.

    Article  PubMed  Google Scholar 

  10. Borkman, M., Storlien, L.H., Pan, D.A., Jenkins, A.B., Chisholm, D.J., and Campbell, L.V. (1993) The Relation Between Insulin Sensitivity and the Fatty Acid Composition on Skeletal Muscle Phospholipids, N. Engl. J. Med. 328, 238–244.

    Article  PubMed  CAS  Google Scholar 

  11. Baur, L.A., O'Connor, J., Pan, D.A., and Storlien, H. (1999) Relationship Between Maternal Risk of Insulin Resistance and the Child's Muscle Membrane Fatty Acid Composition, Diabetes 48, 112–116.

    PubMed  CAS  Google Scholar 

  12. Blond, J.P., Henchiri, C., and Bézard, J. (1989) Delta-6 and Delta-5 Desaturase Activities in Liver from Obese Zucker Rats at Different Ages, Lipids 24, 389–395.

    PubMed  CAS  Google Scholar 

  13. Guesnet, P., Bourre, J.-M., Guerre-Millo, M., Pascal, G., and Durand, G. (1990) Tissue Phospholipid Fatty Acid Composition in Genetically Lean or Obese Zucker Female Rats on the Same Diet, Lipids 25, 517–522.

    PubMed  CAS  Google Scholar 

  14. Phinney, S.D., Tang, A.B., Thurmond, D.C., Nakamura, M.T., and Stern, J.S. (1993) Abnormal Polyunsaturated Lipid Metabolism in the Obese Zucker Rat with Partial Metabolic Correction by γ-Linolenic Acid Administration, Metabolism 42, 1127–1140.

    Article  PubMed  CAS  Google Scholar 

  15. Phinney, S.D., Fisler, J.S., Tang, A.B., and Warden, C.H. (1994) Liver Fatty Acid Composition Correlates with Body Fat and Sex in a Multigenic Mouse Model of Obesity, Am. J. Clin. Nutr. 60, 61–67.

    PubMed  CAS  Google Scholar 

  16. Thurmond, D.C., Tang, A.B., Nakamura, M.T., Stern, J.S., and Phinney, S.D. (1993) Time-Dependent Effects of Progressive Gamma-Linoleate Feeding on Hyperphagia, Weight Gain, and Erythrocyte Fatty Acid Composition During Growth of Zucker Obese Rats, Obes. Res. 1, 118–125.

    PubMed  CAS  Google Scholar 

  17. Bouchard, C., Tremblay, A., Despres, J.-P., Nadeau, A., Lupien, P.J., Thériault, G., Dussault, J., Moorjani, S., Pinault, S., and Fournier, G. (1990) The Response to Long-Term Overfeeding in Identical Twins, N. Engl. J. Med. 322, 1477–1482.

    Article  PubMed  CAS  Google Scholar 

  18. Stunkard, A.J., Harris, J.R., Pedersen, N.L., and McClearn, G.E. (1990) The Body-Mass Index of Twins Who Have Been Reared Apart, N. Engl. J. Med. 322, 1483–1487.

    Article  PubMed  CAS  Google Scholar 

  19. Hainer, V., Stunkard, A.J., Kunesová, M., Pařízková, J., Štich, V., and Allison, D.B. (2000) Intrapair Resemblance in Very Low Calorie Diet Induces Weight Loss in Female Obese Identical Twins, Int. J. Obes. Relat. Metab. Disord. 24, 1051–1057.

    Article  PubMed  CAS  Google Scholar 

  20. Bates, C., Horrobin, D.F., and Ellis, K. (1992) Fatty Acids in Plasma Phospholipids and Cholesterol Esters from Identical Twins Concordant and Discordant for Schizophrenia, Schizophr. Res. 6, 1–7.

    Article  Google Scholar 

  21. Stewart, M.E., McDonnell, M.W., and Downing, D.T. (1986) Possible Genetic Control of the Proportions of Branched-Chain Fatty Acids in Human Sebaceous Wax Esters, J. Invest. Dermatol. 86, 706–708.

    Article  PubMed  CAS  Google Scholar 

  22. Pařízková, J. (1977) Body Fat and Physical Fitness, 1st edn., pp. 32–51, M. Nijhoff, Hague.

    Google Scholar 

  23. Brožek, J., Grande, F., Anderson, J.T., and Keys, A. (1967) Densitometric Analysis of Body Composition. Revision of Some Quantitative Assumptions, Am. N.Y. Acad. Sci. 110, 113–140.

    Google Scholar 

  24. Meneely, G.R., and Kaltreider, N.L. (1949) The Volume of the Lung Determined by Helium Dilution: Description of the Method and Comparison with Other Procedures, J. Clin. Invest. 28, 129–139.

    Article  PubMed  CAS  Google Scholar 

  25. Durnin, J.V., and Wommersley, A.G. (1974) Body Fat Assessed from Total Body Density and Its Estimation from Skinfold Thickness: Measurements on 481 Men and Women Aged from 16 to 72 Years, Brit. J. Nutr. 32, 77–97.

    Article  PubMed  CAS  Google Scholar 

  26. Lohman, T., Roche, A., and Martorel, R., eds. (1989) Standardization of Anthropometric Measurements, pp. 39–80, Human Kinetics, Champaign.

    Google Scholar 

  27. Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  28. Carlson, L.A. (1985) Extraction of Lipids from Human Whole Serum and Lipoproteins and From Rat Liver Tissue with Methylene Chloride-Methanol: A Comparison with Extraction with Chloroform-Methanol, Clin. Chim. Acta 149, 89–93.

    Article  PubMed  CAS  Google Scholar 

  29. Hirsch, J. (1962) Composition of Adipose Tissue, in Adipose Tissue as an Organ (L.W. Kinsella, ed.), pp. 79–123, Thomas, Springfield, IL.

    Google Scholar 

  30. Sinclair, H.M. (1982) The Relative Importance of Essential Fatty Acids of the Linoleic and Linolenic Families: Studies with an Eskimo Diet, Prog. Lipid. Res. 20, 897–899.

    Article  Google Scholar 

  31. Phinney, S.D., Odin, R.S., Johnson, S.B., and Holman, R.T. (1990) Reduced Arachidonate in Serum Phospholipids and Cholesteryl Ester Associated with Vegetarian Diets in Humans, Am. J. Clin. Nutr. 51, 385–392.

    PubMed  CAS  Google Scholar 

  32. Björntorp, P. (1993) Visceral Obesity: A “Civilization Syndrome”, Obesity Res. 1, 206–222.

    Google Scholar 

  33. Kissebah, A.H., and Krakower, G.R. (1994) Regional Adiposity and Morbidity, Physiol. Rev. 74, 761–811.

    PubMed  CAS  Google Scholar 

  34. Kunešová, M., Hainer, V., Hergetová, H., Žák, A., Pařízková, J., Hořejš, J., and Štich, V. (1995) Simple Anthropometric Measurements—Relation to Body Fat Mass, Visceral Adipose Tissue and Risk Factors of Atherogenesis, Sborn. Lék. 96, 257–268.

    PubMed  Google Scholar 

  35. Lands, W.E.M. (1995) Long-Term Fat Intake and Biomarkers, Am. J. Clin. Nutr. 61, 721S-725S.

    PubMed  CAS  Google Scholar 

  36. Hellerstein, M.K., Christiansen, M., Kaempfer, S., Kletke, C., Wu, K., Reid, J.S., Mulligan K., Hellerstein, N.S., and Shackleton, C.H. (1991) Measurement of de novo Hepatic Lipogenesis in Humans Using Stable Isotopes, J. Clin. Invest. 87, 1841–1852.

    PubMed  CAS  Google Scholar 

  37. Aarsland, A., Chinkes, D., and Wolfe, R.R. (1997) Hepatic and Whole-Body Fat Synthesis in Humans During Carbohydrate Overfeeding, Am. J. Clin. Nutr. 65, 1774–1782.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Kunešová.

About this article

Cite this article

Kunešová, M., Hainer, V., Tvrzická, E. et al. Assessment of dietary and genetic factors influencing serum and adipose fatty acid composition in obese female identical twins. Lipids 37, 27–32 (2002). https://doi.org/10.1007/s11745-002-0860-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-002-0860-z

Keywords

Navigation