Skip to main content

Advertisement

Log in

Energy-efficient indoor search by swarms of simulated flying robots without global information

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

Swarms of flying robots are a promising alternative to ground-based robots for search in indoor environments with advantages such as increased speed and the ability to fly above obstacles. However, there are numerous problems that must be surmounted including limitations in available sensory and on-board processing capabilities, and low flight endurance. This paper introduces a novel strategy to coordinate a swarm of flying robots for indoor exploration that significantly increases energy efficiency. The presented algorithm is fully distributed and scalable. It relies solely on local sensing and low-bandwidth communication, and does not require absolute positioning, localisation, or explicit world-models. It assumes that flying robots can temporarily attach to the ceiling, or land on the ground for efficient surveillance over extended periods of time. To further reduce energy consumption, the swarm is incrementally deployed by launching one robot at a time. Extensive simulation experiments demonstrate that increasing the time between consecutive robot launches significantly lowers energy consumption by reducing total swarm flight time, while also decreasing collision probability. As a trade-off, however, the search time increases with increased inter-launch periods. These effects are stronger in more complex environments. The proposed localisation-free strategy provides an energy efficient search behaviour adaptable to different environments or timing constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmadzadeh, A., Buchman, G., Cheng, P., Jadbabaie, A., Keller, J., Kumar, V., & Pappas, G. (2006). Cooperative control of UAVs for search and coverage. In Proceedings of the conference on unmanned systems, AUVSI, Arlington (pp. 1–14).

  • Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., & Zdravkovic, V. (2008). Empirical investigation of starling flocks: A benchmark study in collective animal behaviour. Animal Behaviour, 76(1), 201–215.

    Article  Google Scholar 

  • Batalin, M., & Sukhatme, G. (2002). Spreading out: A local approach to multi-robot coverage. In Proceedings of the international symposium on distributed autonomous robotic systems (pp. 373–382). Berlin: Springer.

    Google Scholar 

  • Batalin, M., & Sukhatme, G. (2004). Coverage, exploration and deployment by a mobile robot and communication network. Telecommunication Systems, 26(2–4), 181–196.

    Article  Google Scholar 

  • Batalin, M., Sukhatme, G., & Hattig, M. (2004). Mobile robot navigation using a sensor network. In Proceedings of the international conference robotics and automation (Vol. 1, pp. 636–641). Piscataway: IEEE Press.

    Google Scholar 

  • Baxter, J. L., Burke, E. K., Garibaldi, J. M., & Norman, M. (2007). Multi-robot search and rescue: A potential field based approach. In Mukhopadhyay, S., & Gupta, G. (Eds.), Autonomous robots and agents (pp. 9–16). Berlin: Springer.

    Chapter  Google Scholar 

  • Bisson, J., Michaud, F., & Letourneau, D. (2003). Relative positioning of mobile robots using ultrasounds. In Proceedings of the international conference on intelligent robots and systems, IROS ’03 (pp. 1783–1788). Piscataway: IEEE Press.

    Google Scholar 

  • Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: from natural to artificial systems. New York: Oxford University Press.

    MATH  Google Scholar 

  • Bryson, M., & Sukkarieh, S. (2007). Co-operative localisation and mapping for multiple UAVs in unknown environments. In Proceedings of the aerospace conference (pp. 1–12). Piscataway: IEEE Press.

    Google Scholar 

  • Burgard, W., Moors, M., Stachniss, C., & Schneider, F. (2005). Coordinated multi-robot exploration. IEEE Transactions on Robotics, 21(3), 376–386.

    Article  Google Scholar 

  • Corke, P., Peterson, R., & Rus, D. (2005). Localization and navigation assisted by networked cooperating sensors and robots. The International Journal of Robotics Research, 24(9), 771–786.

    Article  Google Scholar 

  • Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (1990). Introduction to algorithms. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Desbiens, A. L., Asbeck, A. T., & Cutkosky, M. R. (2009). Scansorial landing and perching. In Proceedings of the 14th international symposium on robotics research (pp. 1–14). Berlin: Springer.

    Google Scholar 

  • Dijkstra, E. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269–271.

    Article  MATH  MathSciNet  Google Scholar 

  • Dorigo, M., & Birattari, M. (2007). Swarm intelligence. Scholarpedia, 2(9), 1462.

    Article  Google Scholar 

  • Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localization and mapping (SLAM): part I. IEEE Robotics & Automation Magazine, 13(2), 99–110.

    Article  Google Scholar 

  • Filliat, D., & Meyer, J. (2003). Map-based navigation in mobile robots: I. A review of localization strategies. Cognitive Systems Research, 4(4), 243–282.

    Article  Google Scholar 

  • Flint, M., Polycarpou, M., & Fernandez-Gaucherand, E. (2002). Cooperative control for multiple autonomous UAV’s searching for targets. In Proceedings of the 41st conference on decision and control (Vol. 3, pp. 2823–2828). Piscataway: IEEE Press.

    Chapter  Google Scholar 

  • Fowers, S. G., Lee, D. J., Tippetts, B. J., Lillywhite, K. D., Dennis, A. W., & Archibald, J. K. (2007). Vision aided stabilization and the development of a quad-rotor micro UAV. In Proceedings of the international symposium on computational intelligence in robotics and automation (pp. 143–148). Piscataway: IEEE Press.

    Chapter  Google Scholar 

  • Gage, D. (1992). Command control for many-robot systems. Unmanned System Magazine, 10(4), 28–34.

    Google Scholar 

  • Grzonka, S., Grisetti, G., & Burgard, W. (2009). Towards a navigation system for autonomous indoor flying. In Proceedings of the international conference on robotics and automation (pp. 2878–2883). Piscataway: IEEE.

    Google Scholar 

  • Gurdan, D., Stumpf, J., Achtelik, M., Doth, K. M., Hirzinger, G., & Rus, D. (2007). Energy-efficient autonomous four-rotor flying robot controlled at 1 kHz. In Proceedings of the international conference on robotics and automation, ICRA ’07 (pp. 361–366). Piscataway: IEEE Press.

    Chapter  Google Scholar 

  • Heo, N., & Varshney, P. K. (2005). Energy-efficient deployment of intelligent mobile sensor networks. IEEE Transactions on Systems, Man and Cybernetics, Part A, 35(1), 78–92.

    Article  Google Scholar 

  • Hoffmann, G., Rajnarayan, D., Waslander, S., Dostal D, Jang J., & Tomlin, C. (2004). The stanford testbed of autonomous rotorcraft for multi agent control (STARMAC). In Proceedings of the 23rd digital avionics systems conference, DASC ’04 (Vol. 2, pp. 1–10). Piscataway: IEEE Press.

    Google Scholar 

  • Hoffmann, G., Huang, H., Waslander, S., & Tomlin, C. (2007). Quadrotor helicopter flight dynamics and control: Theory and experiment. In Proceedings of the guidance, navigation, and control conference (pp. 1–20). Reston: AIAA.

    Google Scholar 

  • Howard, A., Mataric, M. J., & Sukhatme, G. S. (2002a). An incremental self-deployment algorithm for mobile sensor networks. Autonomous Robots, 13(2), 113–126.

    Article  MATH  Google Scholar 

  • Howard, A., Mataric, M. J., & Sukhatme, G. S. (2002b). Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage problem. In Proceedings of the 6th distributed autonomous robotic systems (Vol. 5, pp. 299–308). Berlin: Springer.

    Google Scholar 

  • Iida, F. (2003). Biologically inspired visual odometer for navigation of a flying robot. Robotics and Autonomous Systems, 44, 201–208.

    Article  Google Scholar 

  • Khatib, O. (1985). Real-time obstacle avoidance for manipulators and mobile robots. In Proceedings of the international conference on robotics and automation (Vol. 2, pp. 500–505). Piscataway: IEEE Press.

    Google Scholar 

  • Li, Q., Rosa, M. D., & Rus, D. (2003). Distributed algorithms for guiding navigation across a sensor network. In Proceedings of the 9th annual international conference on Mobile computing and networking, MobiCom ’03 (pp. 313–325). New York: ACM.

    Chapter  Google Scholar 

  • Liu, B., Brass, P., Dousse, O., Nain, P., & Towsley, D. (2005). Mobility improves coverage of sensor networks. In Proceedings of the 6th international symposium on Mobile ad hoc networking and computing (pp. 300–308). New York: ACM.

    Chapter  Google Scholar 

  • Mamei, M., & Zambonelli, F. (2005). Physical deployment of digital pheromones through RFID technology. In Proceedings of the swarm intelligence symposium, SIS ’05 (pp. 281–288). Piscataway: IEEE Press.

    Chapter  Google Scholar 

  • McLurkin, J., & Smith, J. (2007). Distributed algorithms for dispersion in indoor environments using a swarm of autonomous mobile robots. In Alami, R., Chatila, R., & Asama, H. (Eds.), Distributed autonomous robotic systems 6 (pp. 399–408). Berlin: Springer.

    Chapter  Google Scholar 

  • Mei, Y., Lu, Y. H., Hu, Y. C., & Lee, C. S. G. (2005). A case study of mobile robot’s energy consumption and conservation techniques. In Proceedings of the 12th international conference on advanced robotics, ICAR ’05 (pp. 492–497). Piscataway: IEEE Press.

    Google Scholar 

  • Melhuish, C., & Welsby, J. (2002). Gradient ascent with a group of minimalist real robots: Implementing secondary swarming. In Proceedings of the international conference on systems, man and cybernetics (pp. 509–514). Piscataway: IEEE Press.

    Google Scholar 

  • Meyer, J.A., & Filliat, D. (2003). Map-based navigation in mobile robots: II. A review of map-learning and path-planning strategies. Cognitive Systems Research, 4(4), 283–317.

    Article  Google Scholar 

  • Nakamura, T., Ohara, M., Ogasawara, T., & Ishiguro, H. (2003). Fast self-localization method for mobile robots using multiple omnidirectional vision sensors. Machine Vision Applications, 14(2), 129–138.

    Google Scholar 

  • Nardi, R. D., Holland, O., Woods, J., & Clark, A. (2006). SwarMAV: A swarm of miniature aerial vehicles. In Proceedings of the 21st international UAV systems conference.

  • Nouyan, S., Campo, A., & Dorigo, M. (2008). Path formation in a robot swarm. Swarm Intelligence, 2(1), 1–23.

    Article  Google Scholar 

  • Nouyan, S., Groß, R., Bonani, M., Mondada, F., & Dorigo, M. (2009). Teamwork in self-organized robot colonies. Transactions on Evolutionary Computation, 13(4), 695–711.

    Article  Google Scholar 

  • Oh, P. Y., Joyce, M., & Gallagher, J. (2005). Designing an aerial robot for hover-and-stare surveillance. In Proceedings of the 12th international conference on advanced robotics (pp. 303–308). Piscataway: IEEE Press.

    Chapter  Google Scholar 

  • O’Hara, K. J., & Balch, T. R. (2004). Distributed path planning for robots in dynamic environments using a pervasive embedded network. In Proceedings of the 3rd international conference on autonomous agents and multi-agent systems (Vol. 3, pp. 1538–1539). Piscataway: IEEE Press.

    Google Scholar 

  • Payton, D., Daily, M., Estowski, R., Howard, M., & Lee, C. (2001). Pheromone robotics. Autonomous Robots, 11(3), 319–324.

    Article  MATH  Google Scholar 

  • Payton, D., Estkowski, R., & Howard, M. (2004). Pheromone robotics and the logic of virtual pheromones. In Şahin, E., & Spears, W. (Eds.), LNCS : Vol. 3342. Swarm robotics: SAB 2004 international workshop (pp. 45–57). Berlin: Springer.

    Google Scholar 

  • Perkins, C. E., & Royer, E. M. (1999). Ad-hoc on-demand distance vector routing. In Proceedings of the 2nd workshop on mobile computing systems and applications, WMCSA ’99 (pp. 90–100). Piscataway: IEEE Press.

    Chapter  Google Scholar 

  • Pezeshkian, N., Nguyen, H., & Burmeister, A. (2007). Unmanned ground vehicle radio relay deployment system for non-line-of-sight operations. In 13th IASTED international conference on robotics and applications. Calgary: ACTA Press.

    Google Scholar 

  • Poduri, S., & Sukhatme, G. S. (2004). Constrained coverage for mobile sensor networks. In Proceedings of the international conference on robotics and automation (pp. 165–171). Piscataway: IEEE Press.

    Google Scholar 

  • Pugh, J., Raemy, X., Favre, C., Falconi, R., & Martinoli, A. (2009). A fast on-board relative positioning module for multi-robot systems. IEEE Transactions on Mechatronics, Focused Section on Mechatronics in Multi-Robot Systems, 14(2), 151–162.

    Google Scholar 

  • Reif, J., & Wang, H. (1999). Social potential fields: A distributed behavioral control for autonomous robots. Robotics and Autonomous Systems, 27(3), 171–194.

    Article  Google Scholar 

  • Roberts, J., Stirling, T., Zufferey, J. C., & Floreano, D. (2007). Quadrotor using minimal sensing for autonomous indoor flight. In European micro air vehicle conference and flight competition, EMAV ’07.

  • Roberts, J., Zufferey, J. C., & Floreano, D. (2008). Energy management for indoor hovering robots. In Proceedings of the international conference on intelligent robots and systems (pp. 1242–1247). Piscataway: IEEE Press.

    Google Scholar 

  • Roberts, J., Stirling, T., Zufferey, J. C., & Floreano, D. (2009). 2.5D infrared range and bearing system for collective robotics. In Proceedings of the international conference on intelligent robots and systems, IROS ’09 (pp. 3659–3664). Piscataway: IEEE Press.

    Chapter  Google Scholar 

  • Rudol, P., Wzorek, M., Conte, G., & Doherty, P. (2008). Micro unmanned aerial vehicle visual servoing for cooperative indoor exploration. In Proceedings of the aerospace conference (pp. 1–10). Piscataway: IEEE Press.

    Google Scholar 

  • Sharma, R., & Ghose, D. (2007). Swarm intelligence based collision avoidance between realistically modelled UAV clusters. In Proceedings of the American control conference (pp. 3892–3897). Piscataway: IEEE Press.

    Chapter  Google Scholar 

  • Siegwart, R., & Nourbakhsh, I. R. (2004). Introduction to autonomous mobile robots. Cambridge: MIT Press.

    Google Scholar 

  • Stipes, J., Hawthorne, R., Scheidt, D., & Pacifico, D. (2006). Cooperative localization and mapping. In Proceedings of the 2006 international conference on networking, sensing and control (pp. 596–601). Piscataway: IEEE Press.

    Chapter  Google Scholar 

  • Unver, O., Uneri, A., Aydemir, A., & Sitti, M. (2006). Geckobot: A gecko inspired climbing robot using elastomer adhesives. In Proceedings of the international conference on robotics and automation, ICRA ’06 (pp. 2329–2335). Piscataway: IEEE Press.

    Chapter  Google Scholar 

  • Valenti, M., Bethke, B., How, J. P., Farias, D. P., & Vian, J. (2007). Embedding health management into mission tasking for UAV teams. In American control conference (pp. 5777–5783). Piscataway: IEEE Press.

    Chapter  Google Scholar 

  • Wang, G., Cao, G., Porta, T. L., & Zhang, W. (2005). Sensor relocation in mobile sensor networks. In Proceedings of the 24th annual joint conference of the IEEE computer and communications societies, INFOCOM ’05 (pp. 2302–2312). Piscataway: IEEE Press.

    Chapter  Google Scholar 

  • York, G. W., & Pack, D. J. (2008). Cooperative persistent surveillance search algorithms using multiple unmanned aerial vehicles. In Grundel, D., Murphey, R., Pardalos, P., & Prokopyev, O. (Eds.), Cooperative networks: control and optimization (pp. 279–290). Cheltenham: Edward Elgar.

    Google Scholar 

  • Zavlanos, M. M., & Pappas, G. J. (2007). Potential fields for maintaining connectivity of mobile networks. IEEE Transactions on Robotics, 23(4), 812–816.

    Article  Google Scholar 

  • Zeimpekis, V., Giaglis, G. M., & Lekakos, G. (2003). A taxonomy of indoor and outdoor positioning techniques for mobile location services. SIGecom Exchange, 3(4), 19–27.

    Article  Google Scholar 

  • Ziparo, V. A., Kleiner, A., Nebel, B., & Nardi, D. (2007). RFID-based exploration for large robot teams. In Proceedings of the international conference on robotics and automation, ICRA ’07 (pp. 4606–4613). Piscataway: IEEE Press.

    Chapter  Google Scholar 

  • Zou, Y., & Chakrabarty, K. (2003). Sensor deployment and target localization based on virtual forces. In Proceedings of the 22nd annual joint conference of the IEEE computer and communications societies, INFOCOM ’03 (Vol. 2, pp. 1293–1303). Piscataway: IEEE Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Stirling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stirling, T., Wischmann, S. & Floreano, D. Energy-efficient indoor search by swarms of simulated flying robots without global information. Swarm Intell 4, 117–143 (2010). https://doi.org/10.1007/s11721-010-0039-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-010-0039-3

Keywords

Navigation