Skip to main content

Advertisement

Log in

Gastric Bypass Surgery May Improve Beta Cell Apoptosis with Ghrelin Overexpression in Patients with BMI ≥ 32.5 kg/m2

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Roux-en-Y gastric bypass (RYGB) surgery can lead to long-term remission of type 2 diabetes mellitus, depending on changes in weight and circulating levels of gut hormones. The general objectives of this study were to evaluate changes in plasma levels of the ghrelin gene products following RYGB surgery and to determine the role of ghrelin in inhibiting apoptosis of INS-1 cells induced by hyperglycemia.

Methods

Sixteen obese Chinese patients with type 2 diabetes mellitus who underwent gastric bypass surgery were assessed in this investigation. Blood plasma levels of acylated ghrelin (AG), unacylated ghrelin (UAG), and obestatin (OB) were measured both before and 12 months after RYGB surgery. To determine the effect of ghrelin on inhibition of apoptosis, INS-1 cells were cultured in a high glucose concentration and treated with AG, UAG, or OB. Cell viability was assessed using the MTT assay, and apoptosis was evaluated by flow cytometry with Annexin-V FITC/PI double staining and transmission electron microscopy. Intracellular calcium trafficking was assessed using flow cytometry and confocal microscopy. All the data was processed using the SPSS statistical package and expressed as means ± SD, with p < 0.05 considered statistically significant.

Results

Fasting and postprandial plasma levels of AG, UAG, and OB were significantly elevated 1 year after RYGB surgery. Mean fasting plasma AG, UAG, and OB increased from preoperative levels of 37.0, 462, and 69.4 pg/mL, respectively, to 61.4, 804, and 112 pg/mL (with p < 0.05) 1 year after surgery. Mean 120-min postprandial plasma AG, UAG, and OB increased from preoperative levels of 23.8, 287, and 53.8 pg/mL, respectively, to 39.7, 516, and 69.0 pg/mL (with p < 0.05) postoperatively. After a 1-week culture of INS-1 beta cell in high glucose, peptide treatment showed increased cell survival by 69 % (AG), 60 % (UAG), and 73 % (OB) and decreased apoptosis by 49 % (AG), 37 % (UAG), and 38 % (OB) compared to cells cultured in high glucose without peptides, respectively (with p < 0.05). Treatment with AG, UAG, and OB inhibited intracellular calcium mobilization and intramitochondrial calcium accumulation in INS-1 cells to protect the cells from hyperglycemia-induced apoptosis.

Conclusions

The remission of diabetes following RYGB surgery seems to be associated with increased plasma levels of AG, UAG, and OB. Moreover, the ghrelin gene products probably protect β cells by maintaining calcium homeostasis. Additional mechanisms, currently unclear, are likely to be involved as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. IDF diabetes atlas. 5th ed. Brussels: International Diabetes Federation, 2011 (http://www.idf.org/diabetesatlas).

  2. Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China. N Engl J Med. 2010;362:1090–101.

    Article  PubMed  CAS  Google Scholar 

  3. Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122(3):248.e5–56.e5.

    Article  Google Scholar 

  4. Buchwald H, Avidor Y, Braunwald E, Fahrbach K, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292:1724–37.

    Article  PubMed  CAS  Google Scholar 

  5. Rubino F. Is type 2 diabetes an operable intestinal disease? A provocative yet reasonable hypothesis. J Diabetes Care. 2008;31(2):$290–96.

    Article  Google Scholar 

  6. Yu H, Zheng X, Zhang Z. Mechanism of Roux-en-Y gastric bypass treatment for type 2 diabetes in rats. J Gastrointest Surg. 2013;17(6):1073–83.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Shak JR, Roper J, Perez-Perez GI, et al. The effect of laparoscopic gastric banding surgery on plasma levels of appetite-control, insulinotropic, and digestive hormones. Obes Surg. 2008;18:1089–96.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Martins C, Kjelstrup L, Ingrid L, et al. Impact of sustained weight loss achieved through Roux-en-Y gastric bypass or a lifestyle intervention on ghrelin, obestatin, and ghrelin/obestatin ratio in morbidly obese patients. Obes Surg. 2011;21(6):751–8.

    Article  PubMed  Google Scholar 

  9. Holdstock C, Engstrӧm BE, Ohrvall M, et al. Ghrelin and adipose tissue regulatory peptides: effect of gastric bypass surgery in obese humans. J Clin Endocrinol Metab. 2003;88:3177–83.

    Article  PubMed  CAS  Google Scholar 

  10. Faraj M, Havel PJ, Phélis S, et al. Plasma acylation-stimulating protein, adiponectin, leptin, and ghrelin before and after weight loss induced by gastric bypass surgery in morbidly obese subjects. J Clin Endocrinol Metab. 2003;88:1594–602.

    Article  PubMed  CAS  Google Scholar 

  11. Fruhbeck G, Rotellar F, Hernández-Lizoain JL, et al. Fasting plasma ghrelin concentrations 6 months after gastric bypass are not determined by weight loss or changes in insulinemia. Obes Surg. 2004;14:1208–15.

    Article  PubMed  Google Scholar 

  12. Cummings DE, Weigle DS, Frayo RS, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002;346(21):1623–30.

    Article  PubMed  Google Scholar 

  13. Morinigo R, Casamitjana R, Moize V, et al. Short-term effects of gastric bypass surgery on circulating ghrelin levels. Obes Res. 2004;12:1108–16.

    Article  PubMed  Google Scholar 

  14. Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–60.

    Article  PubMed  CAS  Google Scholar 

  15. Abizaid A, Horvath TL. Ghrelin and the central regulation of feeding and energy balance. Indian J Endocrinol Metab. 2012;16 Suppl 3:S617–26.

    PubMed Central  PubMed  CAS  Google Scholar 

  16. González-Jiménez E, Schmidt Río-Valle J. Regulation of dietary intake and energy balance: factors and mechanisms involved. Nutr Hosp. 2012;27(6):1850–9.

    PubMed  Google Scholar 

  17. Damjanovic SS, Lalic NM, Pesko PM, et al. Acute effects of ghrelin on insulin secretion and glucose disposal rate in gastrectomized patients. J Clin Endocrinol Metab. 2006;91(7):2574–81.

    Article  PubMed  CAS  Google Scholar 

  18. Kim SW, Kim KW, Shin CS, et al. Acylated ghrelin secretion is acutely suppressed by oral glucose load or insulin-induced hypoglycemia independently of basal growth hormone secretion in humans. Horm Res. 2007;67(5):211–9.

    Article  PubMed  CAS  Google Scholar 

  19. Kishimoto I, Tokudome T, Hosoda H, et al. Ghrelin and cardiovascular diseases. J Cardiol. 2012;59(1):8–13.

    Article  PubMed  Google Scholar 

  20. Korbonits M, Goldstone AP, Gueorguiev M, et al. Ghrelin—a hormone with multiple functions. Front Neuroendocrinol. 2004;25(1):27–68.

    Article  PubMed  CAS  Google Scholar 

  21. Soares JB, Leite-Moreira AF. Ghrelin, des-acyl ghrelin and obestatin: three pieces of the same puzzle. Peptides. 2008;29(7):1255–70.

    Article  PubMed  CAS  Google Scholar 

  22. Granata R, Baragli A, Settanni F, et al. Unraveling the role of the ghrelin gene peptides in the endocrine pancreas. J Mol Endocrinol. 2010;45(3):107–18.

    Article  PubMed  CAS  Google Scholar 

  23. Granata R, Isgaard J, Alloatti G, et al. Cardiovascular actions of the ghrelin gene-derived peptides and growth hormone-releasing hormone. Exp Biol Med (Maywood). 2011;236(5):505–14.

    Article  CAS  Google Scholar 

  24. Holst B, Egerod KJ, et al. G protein-coupled receptor 39 deficiency is associated with pancreatic islet dysfunction. Endocrinology. 2009;150(6):2577–85.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Fujimiya M, Asakawa A, Ataka K, et al. Ghrelin, des-acyl ghrelin, and obestatin: regulatory roles on the gastrointestinal motility. Int J Pept. 2010;2010:305192.

    PubMed Central  PubMed  Google Scholar 

  26. Chanclón B, Luque RM, Córdoba-Chacón J, et al. Role of endogenous cortistatin in the regulation of ghrelin system expression at pancreatic level under normal and obese conditions. PLoS One. 2013;8(2):e57834.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Salehi A, Dornonville de la Cour C, Håkanson R, et al. Effects of ghrelin on insulin and glucagon secretion: a study of isolated pancreatic islets and intact mice. Regul Pept. 2004;118(3):143–50.

    Article  PubMed  CAS  Google Scholar 

  28. Peng Z, Xiaolei Z, Al-Sanaban H, et al. Ghrelin inhibits insulin release by regulating the expression of inwardly rectifying potassium channel 6.2 in islets. Am J Med Sci. 2012;343(3):215–9.

    Article  PubMed  Google Scholar 

  29. Cummings DE. Endocrine mechanisms mediating remission of diabetes after gastric bypass surgery. Int J Obes (Lond). 2009;33 Suppl 1:S33–40.

    Article  CAS  Google Scholar 

  30. Merglen A, Theander S, Rubi B, et al. Glucose sensitivity and metabolism-secretion coupling studied during two-year continuous culture in INS-1E insulinoma cells. Endocrinology. 2004;145:667–78.

    Article  PubMed  CAS  Google Scholar 

  31. Asfari M, Janjic D, Meda P, et al. Establishment of 2-mercaptoethanol dependent differentiated insulin-secreting cell lines. Endocrinology. 1992;130:167–78.

    PubMed  CAS  Google Scholar 

  32. Buse JB, Caprio S, Cefalu WT, et al. How do we define cure of diabetes? Diabetes Care. 2009;32:2133–5.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Pournaras DJ, Glicksman C, Vincent RP, et al. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology. 2012;153(8):3613–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Hideharu S, Poochong T, Schauer PR, et al. Review of metabolic surgery for type 2 diabetes in patients with a BMI < 35 kg/m2. J Obes. 2012;2012:147256.

    Google Scholar 

  35. Schernthaner G, Brix JM, Kopp HP, et al. Cure of type 2 diabetes by metabolic surgery? A critical analysis of the evidence in 2010. Diabetes Care. 2011;34 Suppl 2:S355–60.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Oliván B, Teixeira J, Bose M, et al. Effect of weight loss by diet or gastric bypass surgery on peptide YY3-36 levels. Ann Surg. 2009;249(6):948–53.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Kelishadi R, Hashemipour M, Mohammadifard N, et al. Short- and long-term relationships of serum ghrelin with changes in body composition and the metabolic syndrome in prepubescent obese children following two different weight loss programmes. Clin Endocrinol. 2008;69(5):721–9.

    Article  CAS  Google Scholar 

  38. Fruhbeck G, Diez-Caballero A, Gil M, et al. The decrease in plasma ghrelin concentrations following bariatric surgery depends on the functional integrity of the fundus. Obes Surg. 2004;14:606–12.

    Article  PubMed  Google Scholar 

  39. Ariyasu H, Takaya K, Tagami T, et al. Stomach is a major source of circulating ghrelin, and feeding determines plasma ghrelin-like immunoreactivity levels in humans. J Clin Endocrinol Metab. 2001;86:4753–8.

    Article  PubMed  CAS  Google Scholar 

  40. Pournaras DJ, Carel W. Ghrelin and metabolic surgery. Int J Pept. 2010;2010:217267.

    PubMed Central  PubMed  Google Scholar 

  41. Akamizu T, Kangawa K. The physiological significance and potential clinical applications of ghrelin. Eur J Intern Med. 2012;23:197–202.

    Article  PubMed  CAS  Google Scholar 

  42. Moran TH, Dailey MJ. Intestinal feedback signaling and satiety. Physiol Behav. 2011;105(1):77–81.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Patriti A, Facchiano E, Gullà N, et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg. 2007;245(1):157–8.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Borg CM, le Roux CW, Ghatei MA, et al. Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety. Br J Surg. 2006;93(2):210–5.

    Article  PubMed  CAS  Google Scholar 

  45. Zorrilla EP, Iwasaki S, Moss JA, et al. Vaccination against weight gain. Proc Natl Acad Sci U S A. 2006;103(35):13226–31.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Wiedmer P, Nogueiras R, Broglio F, et al. Ghrelin, obesity and diabetes. Nat Clin Pract Endocrinol Metab. 2007;3(10):705–12. Review.

    Article  PubMed  CAS  Google Scholar 

  47. Favaro E, Granata R, Miceli I, et al. The ghrelin gene products and exendin-4 promote survival of human pancreatic islet endothelial cells in hyperglycaemic conditions, through phosphoinositide 3-kinase/Akt, extracellular signal-related kinase (ERK)1/2 and cAMP/protein kinase A (PKA) signalling pathways. Diabetologia. 2012;55(4):1058–70.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Wang W, Zhang D, Zhao H, et al. Ghrelin inhibits cell apoptosis induced by lipotoxicity in pancreatic beta-cell line. Regul Pept. 2010;161(1–3):43–50.

    Article  PubMed  CAS  Google Scholar 

  49. Cai L, Li W, Wang G, et al. Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome c-mediated caspase-3 activation pathway. Diabetes. 2002;51:1938–48.

    Article  PubMed  CAS  Google Scholar 

  50. Wold LE, Ceylan-Isik AF, Fang CX, et al. Metallothionein alleviates cardiac dysfunction in streptozotocin-induced diabetes: role of Ca2+ cycling proteins, NADPH oxidase, poly(ADP-Ribose) polymerase and myosin heavy chain isozyme. Free Radic Biol Med. 2006;40:1419–29.

    Article  PubMed  CAS  Google Scholar 

  51. Li J, Wang P, Yu S, et al. Calcium entry mediates hyperglycemia-induced apoptosis through Ca2+/calmodulin-dependent kinase II in retinal capillary endothelial cells. Mol Vis. 2012;18:2371–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  52. Müller I, Lipp P, Thiel G. Ca2+ signaling and gene transcription in glucose-stimulated insulinoma cells. Cell Calcium. 2012;52(2):137–51.

    Article  PubMed  Google Scholar 

  53. Younce CW, Burmeister MA, Ayala JE. Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a. Am J Physiol Cell Physiol. 2013;304(6):C508–18.

    Article  PubMed  CAS  Google Scholar 

  54. Herchuelz A, Nguidjoe E, Jiang L, et al. β-Cell preservation and regeneration in diabetes by modulation of β-cell Ca2+ homeostasis. Diabetes Obes Metab. 2012;14(3):136–42.

    Article  PubMed  CAS  Google Scholar 

  55. Giorgi G, Baldassari F, Bononi A, et al. Mitochondrial Ca2+ and apoptosis. Cell Calcium. 2012;52(1):36–43.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Xu G, Chen J, Jing G, Shalev A. Preventing β-cell loss and diabetes with calcium channel blockers. Diabetes. 2012;61(4):848–56.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Rudijanto A. Calcium channel blocker (diltiazem) inhibits apoptosis of vascular smooth muscle cell exposed to high glucose concentration through lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) pathway. Acta Med Indones. 2010;42(2):59–65.

    PubMed  Google Scholar 

  58. Wang Y, Gao L, Li Y, Sun Z, et al. Nifedipine protects INS-1 β-cell from high glucose-induced ER stress and apoptosis. Int J Mol Sci. 2011;12(11):7569–80.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Giorgi C, Baldassari F, Bononi A. Mitochondrial Ca(2+) and apoptosis. Cell Calcium. 2012;52(1):36–43.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Giorgi C, Agnoletto C, Bononi A, et al. Mitochondrial calcium homeostasis as potential target for mitochondrial medicine. Mitochondrion. 2012;12(1):77–85.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Wang Y, Nishi M, Doi A, et al. Ghrelin inhibits insulin secretion through the AMPK–UCP2 pathway in beta cells. FEBS Lett. 2010;584(8):1503–8.

    Article  PubMed  CAS  Google Scholar 

  62. Buschard K, Hy M, Bokvist K, et al. Sulfatide controls insulin secretion by modulation of ATP-sensitive K(+)-channel activity and Ca(2+)-dependent exocytosis in rat pancreatic beta-cells. Diabetes. 2002;51:2514–21.

    Article  PubMed  CAS  Google Scholar 

  63. Zhang CY, Baffy G, Perret P, et al. Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell. 2001;105:745–55.

    Article  PubMed  CAS  Google Scholar 

  64. Lee SH, Lee HY, Kim SY, et al. Enhancing effect of taurine on glucose response in UCP2-overexpressing beta cells. Diabetes Res Clin Pract. 2004;66 Suppl 1:S69–74.

    PubMed  CAS  Google Scholar 

  65. Ma X, Lin Y, Lin L, et al. Ablation of ghrelin receptor in leptin-deficient ob/ob mice has paradoxical effects on glucose homeostasis when compared with ablation of ghrelin in ob/ob mice. Am J Physiol Endocrinol Metab. 2012;303(3):E422–31.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by funding from the National Natural Science Foundation of China (No. 81000158) and the Outstanding Scientific Fund of ShengJing Hospital. The paper has been revised by Mark Sewe from China Medical University and all authors showed respect for his kindly help.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Feng, X., Zhong, S. et al. Gastric Bypass Surgery May Improve Beta Cell Apoptosis with Ghrelin Overexpression in Patients with BMI ≥ 32.5 kg/m2 . OBES SURG 24, 561–571 (2014). https://doi.org/10.1007/s11695-013-1135-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-013-1135-4

Keywords

Navigation