Skip to main content
Log in

Proinflammatory Cytokines in Obesity: Impact of Type 2 Diabetes Mellitus and Gastric Bypass

  • Published:
Obesity Surgery Aims and scope Submit manuscript

Background

Obesity and obesity-associated type 2 diabetes mellitus (T2DM) are frequently related to a low-grade chronic inflammatory state, which increases the risk of developing cardiovascular diseases. The aim of the present work was to evaluate the effect of obesity and T2DM on the concentrations of pro-inflammatory factors and to study the effect of weight loss after Roux-en-Y gastric bypass (RYGBP).

Methods

Plasma concentrations of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), serum amyloid A (SAA) and sialic acid (SA) were measured in 25 female volunteers. The concentrations of these cytokines were determined in 14 female obese patients before and after weight loss following RYGBP. Additionally, visceral adipose tissue (VAT) obtained from 15 females was used to quantify expression levels of MCP-1 and CD68 by Real-Time PCR.

Results

Both obese normoglycemic (NG) and T2DM groups exhibited significantly higher MCP-1 (P < 0.05), TNF-α (P < 0.01), SAA (P < 0.05) and SA (P < 0.05) concentrations, compared to the lean group. No differences were found between obese NG and obese T2DM subjects. A significant positive correlation was found between body fat percentage (BF) and all inflammatory markers (P < 0.05) studied. MCP-1 expression levels in VAT were upregulated in obese NG (P = 0.008) and obese T2DM (P = 0.032) patients compared to lean subjects, but no additional detrimental effect of T2DM was observed between both obese groups. After weight loss, SAA (P < 0.001) and SA (P < 0.05) concentrations diminished, whereas circulating levels of MCP-1 showed a tendency to decrease (P = 0.093) and TNF-α did not change.

Conclusion

The present findings suggest that elevated pro-inflammatory cytokine levels found in obese patients relate mainly to obesity rather than to T2DM. Moreover, surgery-induced weight loss reduces circulating concentrations of key pro-inflammatory factors, which contribute to the improvement in the cardiovascular co-morbidity following excess weight loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest 2005; 115: 1111–9.

    PubMed  CAS  Google Scholar 

  2. Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006; 444: 860–7.

    Article  PubMed  CAS  Google Scholar 

  3. Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature 2006; 444: 881–7.

    Article  PubMed  CAS  Google Scholar 

  4. Guzik TJ, Mangalat D, Korbut R. Adipocytokines - novel link between inflammation and vascular function? J Physiol Pharmacol 2006; 57: 505–28.

    PubMed  CAS  Google Scholar 

  5. Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature 2006; 444: 875–80.

    Article  PubMed  CAS  Google Scholar 

  6. Fantuzzi G, Mazzone T. Adipose tissue and atherosclerosis: exploring the connection. Arterioscler Thromb Vasc Biol 2007; 27: 996–1003.

    Article  PubMed  CAS  Google Scholar 

  7. Ritchie SA, Connell JM. The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr Metab Cardiovasc Dis 2007; 17: 319–26.

    Article  PubMed  CAS  Google Scholar 

  8. Trayhurn P, Wood IS. Signalling role of adipose tissue: adipokines and inflammation in obesity. Biochem Soc Trans 2005; 33: 1078–81.

    Article  PubMed  CAS  Google Scholar 

  9. Visser M, Bouter LM, McQuillan GM et al. Elevated C-reactive protein levels in overweight and obese adults. JAMA 1999; 282: 2131–5.

    Article  PubMed  CAS  Google Scholar 

  10. Sartipy P, Loskutoff DJ. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci USA 2003; 100: 7265–70.

    Article  PubMed  CAS  Google Scholar 

  11. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science 1993; 259: 87–91.

    Article  PubMed  CAS  Google Scholar 

  12. Kern PA, Ranganathan S, Li C et al. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 2001; 280: E745–51.

    PubMed  CAS  Google Scholar 

  13. Gómez-Ambrosi J, Salvador J, Rotellar F et al. Increased serum amyloid A concentrations in morbid obesity decrease after gastric bypass. Obes Surg 2006; 16: 262–9.

    Article  PubMed  Google Scholar 

  14. Bastard JP, Jardel C, Bruckert E et al. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol Metab 2000; 85: 3338–42.

    Article  PubMed  CAS  Google Scholar 

  15. Cottam DR, Mattar SG, Barinas-Mitchell E, et al. The chronic inflammatory hypothesis for the morbidity associated with morbid obesity: implications and effects of weight loss. Obes Surg 2004; 14: 589–600.

    Article  PubMed  Google Scholar 

  16. Clement K, Viguerie N, Poitou C et al. Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects. FASEB J 2004; 18: 1657–69.

    Article  PubMed  CAS  Google Scholar 

  17. Ryan AS, Nicklas BJ. Reductions in plasma cytokine levels with weight loss improve insulin sensitivity in overweight and obese postmenopausal women. Diabetes Care 2004; 27: 1699–705.

    Article  PubMed  Google Scholar 

  18. Vazquez LA, Pazos F, Berrazueta JR et al. Effects of changes in body weight and insulin resistance on inflammation and endothelial function in morbid obesity after bariatric surgery. J Clin Endocrinol Metab 2005; 90: 316–22.

    Article  PubMed  CAS  Google Scholar 

  19. Cancello R, Henegar C, Viguerie N et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 2005; 54: 2277–86.

    Article  PubMed  CAS  Google Scholar 

  20. Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab 1998; 83: 847–50.

    Article  PubMed  CAS  Google Scholar 

  21. Bruun JM, Lihn AS, Madan AK et al. Higher production of IL-8 in visceral vs. subcutaneous adipose tissue. Implication of nonadipose cells in adipose tissue. Am J Physiol Endocrinol Metab 2004; 286: E8–13.

    Article  PubMed  CAS  Google Scholar 

  22. Lihn AS, Bruun JM, He G et al. Lower expression of adiponectin mRNA in visceral adipose tissue in lean and obese subjects. Mol Cell Endocrinol 2004; 219: 9–15.

    Article  PubMed  CAS  Google Scholar 

  23. Neels JG, Olefsky JM. Inflamed fat: what starts the fire? J Clin Invest 2006; 116: 33–5.

    Article  PubMed  CAS  Google Scholar 

  24. Muller S, Martin S, Koenig W et al. Impaired glucose tolerance is associated with increased serum concentrations of interleukin 6 and co-regulated acute-phase proteins but not TNF-α or its receptors. Diabetologia 2002; 45: 805–12.

    Article  PubMed  CAS  Google Scholar 

  25. Bruun JM, Verdich C, Toubro S et al. Association between measures of insulin sensitivity and circulating levels of interleukin-8, interleukin-6 and tumor necrosis factor-α. Effect of weight loss in obese men. Eur J Endocrinol 2003; 148: 535–42.

    Article  PubMed  CAS  Google Scholar 

  26. Das SK, Roberts SB, Kehayias JJ et al. Body composition assessment in extreme obesity and after massive weight loss induced by gastric bypass surgery. Am J Physiol Endocrinol Metab 2003; 284: E1080–8.

    PubMed  CAS  Google Scholar 

  27. Matthews DR, Hosker JP, Rudenski AS et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412–9.

    Article  PubMed  CAS  Google Scholar 

  28. Katz A, Nambi SS, Mather K et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab 2000; 85: 2402–10.

    Article  PubMed  CAS  Google Scholar 

  29. Gómez-Ambrosi J, Catalán V, Diez-Caballero A et al. Gene expression profile of omental adipose tissue in human obesity. FASEB J 2004; 18: 215–7.

    PubMed  Google Scholar 

  30. Catalán V, Gómez-Ambrosi J, Rotellar F et al. The obestatin receptor (GPR39) is expressed in human adipose tissue and is down-regulated in obesity-associated type 2 diabetes mellitus. Clin Endocrinol 2007; 66: 598–601.

    Google Scholar 

  31. Cottam DR, Mattar SG, Barinas-Mitchell E et al. The chronic inflammatory hypothesis for the morbidity associated with morbid obesity: implications and effects of weight loss. Obes Surg 2004; 14: 589–600.

    Article  PubMed  Google Scholar 

  32. Frühbeck G, Salvador J. Role of adipocytokines in metabolism and disease. Nutr Res 2004; 24: 803–26.

    Article  CAS  Google Scholar 

  33. Browning LM, Jebb SA, Mishra G et al. Elevated sialic acid, but not CRP, predicts features of the metabolic syndrome independently of BMI in women. Int J Obes 2004; 28: 1004–10.

    Article  CAS  Google Scholar 

  34. Yang RZ, Lee MJ, Hu H et al. Acute-phase serum amyloid A: an inflammatory adipokine and potential link between obesity and its metabolic complications. PLoS Med 2006; 3: e287.

    Article  PubMed  CAS  Google Scholar 

  35. Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology 2007; 132: 2169–80.

    Article  PubMed  CAS  Google Scholar 

  36. Frühbeck G. Screening and interventions for obesity in adults. Ann Intern Med 2004; 141: 245–6.

    PubMed  Google Scholar 

  37. Herder C, Muller-Scholze S, Rating P et al. Systemic monocyte chemoattractant protein-1 concentrations are independent of type 2 diabetes or parameters of obesity: results from the Cooperative Health Research in the Region of Augsburg Survey S4 (KORA S4). Eur J Endocrinol 2006; 154: 311–7.

    Article  PubMed  CAS  Google Scholar 

  38. Zietz B, Buchler C, Herfarth H et al. Caucasian patients with type 2 diabetes mellitus have elevated levels of monocyte chemoattractant protein-1 that are not influenced by the -2518 A–G promoter polymorphism. Diabetes Obes Metab 2005; 7: 570–8.

    Article  PubMed  CAS  Google Scholar 

  39. Hotamisligil GS, Arner P, Caro JF et al. Increased adipose tissue expression of tumor necrosis factor-α in human obesity and insulin resistance. J Clin Invest 1995; 95: 2409–15.

    Article  PubMed  CAS  Google Scholar 

  40. Katsuki A, Sumida Y, Murashima S et al. Serun levels of tumor necrosis- are increased in obese patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1998; 83: 859–62.

    Article  PubMed  CAS  Google Scholar 

  41. Muller S, Martin S, Koenig W et al. Impaired glucose tolerance is associated with increased serum concentrations of interleukin 6 and co-regulated acute-phase proteins but not TNF-α or its receptors. Diabetologia 2002; 45: 805–12.

    Article  PubMed  CAS  Google Scholar 

  42. Dominguez H, Storgaard H, Rask-Madsen C et al. Metabolic and vascular effects of tumor necrosis factor-α blockade with etanercept in obese patients with type 2 diabetes. J Vasc Res 2005; 42: 517–25.

    Article  PubMed  CAS  Google Scholar 

  43. Englyst NA, Crook MA, Lumb P et al. Percentage of body fat and plasma glucose predict plasma sialic acid concentration in type 2 diabetes mellitus. Metabolism 2006; 55: 1165–70.

    Article  PubMed  CAS  Google Scholar 

  44. Bruun JM, Lihn AS, Pedersen SB et al. Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): implication of macrophages resident in the AT. J Clin Endocrinol Metab 2005;90: 2282–9.

    Article  PubMed  CAS  Google Scholar 

  45. Christiansen T, Richelsen B, Bruun JM. Monocyte chemoattractant protein-1 is produced in isolated adipocytes, associated with adiposity and reduced after weight loss in morbid obese subjects. Int J Obes 2005; 29: 146–50.

    Article  CAS  Google Scholar 

  46. Chacon MR, Fernández-Real JM, Richart C et al. Monocyte chemoattractant protein-1 in obesity and type 2 diabetes. Insulin sensitivity study. Obesity 2007; 15: 664–72.

    Article  PubMed  CAS  Google Scholar 

  47. Dahlman I, Kaaman M, Olsson T et al. A unique role of monocyte chemoattractant protein 1 among chemokines in adipose tissue of obese subjects. J Clin Endocrinol Metab 2005; 90: 5834–40.

    Article  PubMed  CAS  Google Scholar 

  48. Patriti A, Facchiano E, Sanna A et al. The enteroinsular axis and the recovery from type 2 diabetes after bariatric surgery. Obes Surg 2004; 14: 840–8.

    Article  PubMed  Google Scholar 

  49. Mathier MA, Ramanathan RC. Impact of obesity and bariatric surgery on cardiovascular disease. Med Clin North Am 2007; 91: 415–31.

    Article  PubMed  Google Scholar 

  50. Vazquez LA, Pazos F, Berrazueta JR et al. Effects of changes in body weight and insulin resistance on inflammation and endothelial function in morbid obesity after bariatric surgery. J Clin Endocrinol Metab 2005; 90: 316–22.

    Article  PubMed  CAS  Google Scholar 

  51. Dandona P, Weinstock R, Thusu K et al. Tumor necrosis factor-α in sera of obese patients: fall with weight loss. J Clin Endocrinol Metab 1998; 83: 2907–10.

    Article  PubMed  CAS  Google Scholar 

  52. Ziccardi P, Nappo F, Giugliano G et al. Reduction of inflammatory cytokine concentrations and improvement of endothelial functions in obese women after weight loss over one year. Circulation 2002; 105: 804–9.

    Article  PubMed  CAS  Google Scholar 

  53. Laimer M, Ebenbichler CF, Kaser S et al Markers of chronic inflammation and obesity: a prospective study on the reversibility of this association in middle-aged women undergoing weight loss by surgical intervention. Int J Obes 2002; 26: 659–62.

    Article  CAS  Google Scholar 

  54. Kopp HP, Kopp CW, Festa A et al. Impact of weight loss on inflammatory proteins and their association with the insulin resistance syndrome in morbidly obese patients Arterioscler Thromb Vasc Biol 2003; 23: 1042–7.

    Article  PubMed  CAS  Google Scholar 

  55. Manco M, Fernández-Real JM, Equitani F et al. Effect of massive weight loss on inflammatory adipocytokines and the innate immune system in morbidly obese women. J Clin Endocrinol Metab 2007; 92: 483–90.

    Article  PubMed  CAS  Google Scholar 

  56. Havel PJ. Update on adipocyte hormones: regulation of energy balance and carbohydrate/lipid metabolism. Diabetes 2004; 53: S143–S151.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gema Frühbeck RNutr, MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catalán, V., Gómez-Ambrosi, J., Ramirez, B. et al. Proinflammatory Cytokines in Obesity: Impact of Type 2 Diabetes Mellitus and Gastric Bypass. OBES SURG 17, 1464–1474 (2007). https://doi.org/10.1007/s11695-008-9424-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-008-9424-z

Key words

Navigation