Skip to main content
Log in

A Comparative Analysis of Integration Indices

  • Tools and Techniques
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

The degree of integration of multidimensional phenotypes has an important place in evolutionary biology, pertaining to the structure of variation that is available for natural selection to work on and therefore to the evolutionary potential of the phenotype. Various indices have been suggested in the literature for measuring integration level, yet their statistical properties have remained mostly unstudied to date. In this study, I used simulations and resampling procedures in order to compare the distributions and sampling properties of different indices. I simulated heterogeneous correlation matrices that ranged widely in their integration level. I applied non-parametric bootstrapping to explore the effect of sampling on recovering the true integration value of these matrices. In addition, I generated the statistical power space for one of the integration indices—the relative standard deviation of the eigenvalues. The results show that the relative variance of eigenvalues maps exactly onto the mean coefficient of determination, and that the index suggested by Hansen and Houle (J Evol Biol 21:1201–1219, 2008) is the same as Van Valen’s (J Theor Biol 45:235–247, 1974) redundancy index, both of which have some undesirable sampling properties that render them less useful in most practical situations. Based on the power analysis, a sample of 30–40 specimens can be considered a sufficient minimum for most studies. The R codes provided here can be utilized by other researchers to yield case-specific insights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ackermann, R. R. (2005). Ontogenetic integration of the hominoid face. Journal of Human Evolution, 48, 175–197.

    Article  PubMed  Google Scholar 

  • Agrawal, A. F., & Stinchcombe, J. R. (2009). How much do genetic covariances alter the rate of adaptation? Proceedings of the Royal Society B: Biological Sciences, 276, 1183–1191.

    Article  PubMed  Google Scholar 

  • Armbruster, W. S., Hansen, T. F., Pelabon, C., Perez-Barrales, R., & Maad, J. (2009). The adaptive accuracy of flowers: Measurement and microevolutionary patterns. Annals of Botany, 103, 1529–1545.

    Article  PubMed  Google Scholar 

  • Cane, W. P. (1993). The ontogeny of postcranial integration in the common tern, sterna hirundo. Evolution, 47, 1138–1151.

    Article  Google Scholar 

  • Cheverud, J. M. (1982). Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution, 36, 499–516.

    Article  Google Scholar 

  • Cheverud, J. M. (1984). Quantitative genetics and developmental constraints on evolution by selection. Journal of Theoretical Biology, 110, 155–171.

    Article  PubMed  CAS  Google Scholar 

  • Cheverud, J. M. (1988). A comparison of genetic and phenotypic correlations. Evolution, 42, 958–968.

    Article  Google Scholar 

  • Cheverud, J. M. (1996). Quantitative genetic analysis of cranial morphology in the cotton-top (Saguinus oedipus) and saddle-back (S. fuscicollis) tamarins. Journal of Evolutionary Biology, 9, 5–42.

    Article  Google Scholar 

  • Cheverud, J. M., Rutledge, J. J., & Atchley, W. R. (1983). Quantitative genetics of development: Genetic correlations among age-specific trait values and the evolution of ontogeny. Evolution, 37, 895–905.

    Article  Google Scholar 

  • Cheverud, J. M., Wagner, G. P., & Dow, M. M. (1989). Methods for the comparative analysis of variation patterns. Systematic Zoology, 38, 201–213.

    Article  Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (p. 567). London: Routledge.

    Google Scholar 

  • Cohen, J. (1990). Things I have learned (so far). American Psychologist, 45, 1304–1312.

    Article  Google Scholar 

  • Draghi, J., & Wagner, G. P. (2008). Evolution of evolvability in a developmental model. Evolution, 62, 301–315.

    Article  PubMed  Google Scholar 

  • Drake, A. G., & Klingenberg, C. P. (2010). Large-scale diversification of skull shape in domestic dogs: Disparity and modularity. The American Naturalist, 175, 289–301.

    Article  PubMed  Google Scholar 

  • Emerson, S. B., & Hastings, P. A. (1998). Morphological correlations in evolution: Consequences for phylogenetic analysis. Quarterly Review of Biology, 73, 141–162.

    Article  Google Scholar 

  • Fisher, R. A. (1928). The general sampling distribution of the multiple correlation coefficient. Proceedings of the Royal Society of London Series A, 121, 654–673.

    Article  Google Scholar 

  • Fu, J., & Murphy, R. W. (1999). Discriminating and locating character covariance: An application of permutation tail probability (ptp) analyses. Systematic Zoology, 48, 380–395.

    CAS  Google Scholar 

  • Genz, A., & Bretz, F. (2009). Computation of multivariate normal and T probabilities. Heidelberg: Springer.

    Book  Google Scholar 

  • Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., et al. (2011). mvtnorm: Multivariate normal and t distributions. http://www.CRAN.R-project.org/package=mvtnorm.

  • Goswami, A., & Polly, P. D. (2010). The influence of modularity on cranial morphological disparity in Carnivora and Primates (Mammalia). PLoS ONE, 5, e9517.

    Article  PubMed  Google Scholar 

  • Hallgrímsson, B., Jamniczky, H. A., Young, N., Rolian, C., Parsons, T., Boughner, J., et al. (2009). Deciphering the palimpsest: Studying the relationship between morphological integration and phenotypic covariation. Evolutionary Biology, 36, 355–376.

    Article  Google Scholar 

  • Hallgrímsson, B., Yardly Brown, J. J., & Hall, B. K. (2005). The study of phenotypic variability: An emerging research agenda for understanding the developmental-genetic architecture underlying phenotypic variation. In B. Hallgrímsson & B. K. Hall (Eds.), Variation: A central concept in biology (pp. 29–48). Amsterdam: Elsevier.

    Google Scholar 

  • Hansen, T. F., & Houle, D. (2008). Measuring and comparing evolvability and constraint in multivariate characters. Journal of Evolutionary Biology, 21, 1201–1219.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, T. F., & Houle, D. (2009). Corrigendum. Journal of Evolutionary Biology, 22, 913–915.

    Article  Google Scholar 

  • Hunt, G. (2007). Evolutionary divergence in directions of high phenotypic variance in the ostracode genus Poseidonamicus. Evolution, 61, 1560–1576.

    Article  PubMed  Google Scholar 

  • Jorjani, H., Klei, L., & Emanuelson, U. (2003). A simple method for weighted bending of genetic (co)variance matrices. Journal of Dairy Science, 86, 677–679.

    Article  PubMed  CAS  Google Scholar 

  • Kemp, T. S. (2007). The origin of higher taxa: Macroevolutionary processes, and the case of the mammals. Acta Zoologica, 88, 3–22.

    Article  Google Scholar 

  • Lande, R., & Arnold, S. J. (1983). The measurement of selection on correlated characters. Evolution, 37, 1210–1226.

    Article  Google Scholar 

  • Magwene, P. M. (2001). New tools for studying integration and modularity. Evolution, 55, 1734–1745.

    PubMed  CAS  Google Scholar 

  • Marroig, G., & Cheverud, J. M. (2001). A comparison of phenotypic variation and covariation patterns and the role of phylogeny, ecology, and ontogeny during cranial evolution of new world monkeys. Evolution, 55, 2576–2600.

    PubMed  CAS  Google Scholar 

  • Marroig, G., Shirai, L., Porto, A., de Oliveira, F., & De Conto, V. (2009). The evolution of modularity in the mammalian skull ii: Evolutionary consequences. Evolutionary Biology, 36, 136–148.

    Article  Google Scholar 

  • Mitteroecker, P., & Bookstein, F. (2007). The conceptual and statistical relationship between modularity and morphological integration. Systematic Biology, 56, 818–836.

    Article  PubMed  Google Scholar 

  • Murphy, K. R., & Myors, B. (2004). Statistical power analysis: A simple and general model for traditional and modern hypothesis tests (p. 128). London: Routledge.

    Google Scholar 

  • O’Keefe, F. R., & Wagner, P. J. (2001). Inferring and testing hypotheses of cladistic character dependence by using character compatibility. Systematic Biology, 50, 657–675.

    Article  PubMed  Google Scholar 

  • Pavlicev, M., Cheverud, J., & Wagner, G. (2009). Measuring morphological integration using eigenvalue variance. Evolutionary Biology, 36, 157–170.

    Article  Google Scholar 

  • Porto, A., de Oliveira, F., Shirai, L., De Conto, V., & Marroig, G. (2009). The evolution of modularity in the mammalian skull I: Morphological integration patterns and magnitudes. Evolutionary Biology, 36, 118–135.

    Article  Google Scholar 

  • R Development Core Team. (2011). R: A language and environment for statistical computing. http://www.R-project.org.

  • Rolian, C. (2009). Integration and evolvability in primate hands and feet. Evolutionary Biology, 36, 100–117.

    Article  Google Scholar 

  • Roseman, C., Kenny-Hunt, J., & Cheverud, J. (2009). Phenotypic integration without modularity: Testing hypotheses about the distribution of pleiotropic quantitative trait loci in a continuous space. Evolutionary Biology, 36, 282–291.

    Article  Google Scholar 

  • Schlosser, G. (2004). The role of modules in development and evolution. In G. Schlosser & G. P. Wagner (Eds.), Modularity in development and evolution (pp. 519–583). Chicago: University of Chicago Press.

    Google Scholar 

  • Schluter, D. (1996). Adaptive radiation along genetic lines of least resistance. Evolution, 50, 1766–1774.

    Article  Google Scholar 

  • Sokal, R. R., & Rohlf, F. J. (1995). Biometry (p. 887). New York: W. H. Freeman.

    Google Scholar 

  • Steppan, S. J., Phillips, P. C., & Houle, D. (2002). Comparative quantitative genetics: Evolution of the g matrix. Trends in Ecology & Evolution, 17, 320–327.

    Article  Google Scholar 

  • Van Valen, L. M. (1974). Multivariate structural statistics in natural history. Journal of Theoretical Biology, 45, 235–247.

    Article  PubMed  Google Scholar 

  • Vermeij, G. J. (1973). Adaptation, versatility, and evolution. Systematic Zoology, 22, 466–477.

    Article  Google Scholar 

  • Wagner, G. P. (1984a). Coevolution of functionally constrained characters: Prerequisites for adaptive versatility. Biosystems, 17, 51–55.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, G. P. (1984b). On the eigenvalue distribution of genetic and phenotypic dispersion matrices: Evidence for a nonrandom organization of quantitative character variation. Journal of Mathematical Biology, 21, 77–95.

    Article  Google Scholar 

  • Wagner, G. P. (1988). The significance of developmental constraints for phenotypic evolution. In G. de Jong (Ed.), Population genetics and evolution (pp. 222–229). Berlin: Springer.

    Google Scholar 

  • Wagner, G. P., & Altenberg, L. (1996). Perspective: Complex adaptations and the evolution of evolvability. Evolution, 50, 967–976.

    Article  Google Scholar 

  • Young, N. M., Wagner, G. P., & Hallgrímsson, B. (2010). Development and the evolvability of human limbs. Proceedings of the National Academy of Sciences, 107, 3400–3405.

    Article  CAS  Google Scholar 

  • Zelditch, M. L. (1988). Ontogenetic variation in patterns of phenotypic integration in the laboratory rat. Evolution, 42, 28–41.

    Article  Google Scholar 

  • Zelditch, M. L., Wood, A. R., Bonett, R. M., & Swiderski, D. L. (2008). Modularity of the rodent mandible: Integrating bones, muscles, and teeth. Evolution & Development, 10, 756–768.

    Article  Google Scholar 

  • Zelditch, M. L., Wood, A. R., & Swiderski, D. (2009). Building developmental integration into functional systems: Function-induced integration of mandibular shape. Evolutionary Biology, 36, 71–87.

    Article  Google Scholar 

  • Zeng, Z.-B. (1988). Long-term correlated response, interpopulation covariation, and interspecific allometry. Evolution, 42, 363–374.

    Article  Google Scholar 

Download references

Acknowledgments

I thank Leigh Van Valen, Michael Foote, Mihaela Pavlicev, Ruth Heller, and Ronen Basri for very useful discussions. This manuscript was greatly improved thanks to the careful reading and thoughtful comments of Mihaela Pavlicev, Tao Alter, and an anonymous reviewer. For their financial support, I thank the Biological Sciences Division and the Committee on Evolutionary Biology at the University of Chicago, and the Planning and Grants Committee of the Council of Higher Education in Israel (VATAT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annat Haber.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 69 kb)

Supplementary material 2 (DOC 410 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haber, A. A Comparative Analysis of Integration Indices. Evol Biol 38, 476–488 (2011). https://doi.org/10.1007/s11692-011-9137-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-011-9137-4

Keywords

Navigation