Skip to main content
Log in

Many Possible Worlds: Expanding the Ecological Scenarios in Experimental Evolution

  • Synthesis Paper
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Experimental microbial evolution has focused on the particular ecological scenario where a population is placed suddenly in an environment where its fitness is low, and then adapts while the environment remains stable. In line with this, most microbial evolution studies use fitness measures that report how evolved genotypes fare when competed directly against their own distant ancestor while other studies compare life history traits (such as growth rates) of ancestral and evolved genotypes. This standard way of measuring and reporting changes in fitness has resulted in a consistent body of literature that explains adaptation when populations evolve in this “standard ecological scenario.” Here, I suggest that for experimental evolution to investigate adaptation in other ecological scenarios, such as fluctuating or persistently changing environments, measures of fitness must be expanded such that they not only continue to be comparable between experiments, but also account for evolution and demographic effects in all environments that an evolving lineage experiences. I examine two non-standard measures of fitness—fitness flux and the total number of reproductive events—as potential ways to quantify adaptation by integrating historical information about selection over many environments. This approach could allow us to make quantitative and biologically-meaningful comparisons of adaptation across diverse ecological scenarios. I use the case study of understanding how phytoplankton communities may respond to global change, where environmental variables change continuously, to explore concrete ways of using non-standard fitness measures that consider both demographic effects and selection in changing, rather than in changed, environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., & Leibler, S. (2004). Bacterial persistence as a phenotypic switch. Science, 305, 1622–1625.

    Article  PubMed  CAS  Google Scholar 

  • Barrick, J. E., Yu, D. S., Yoon, S. H., Jeong, H., Oh, T. K., Schneider, D., et al. (2009). Genome evolution and adaptation in a long-term experiment with E. coli. Nature, 461, 1243–1247.

    Article  PubMed  CAS  Google Scholar 

  • Beardall, J., & Raven, J. A. (2004). The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia, 43, 26–41.

    Article  Google Scholar 

  • Bell, G., & Collins, S. (2008). Adaptation, extinction and global change. Evolution Applications, 1, 3–16.

    Article  Google Scholar 

  • Bell, G., & Gonzalez, A. (2009). Evolutionary rescue can prevent extinction following environmental change. Ecology Letters, 12, 942–948.

    Article  PubMed  Google Scholar 

  • Bello, Y., & Waxman, D. (2006). Near-periodic substitution and the genetic variance induced by environmental change. Journal of Theoretical Biology, 239, 152–160.

    Article  PubMed  CAS  Google Scholar 

  • Blount, Z., Borland, C. Z., & Lenski, R. E. (2008). Historical contingency and the evolution of a key innovation in an experimental population of Escherischia coli. Proceedings of the National Academy of Sciences of the United States of America, 105, 7899–7906.

    Article  PubMed  CAS  Google Scholar 

  • Bollmann, J., Klaas, C., & Brand, L. E. (2010). Morphological, physiological characteristics of Gephyrocapsa oceanica var. typical Kamptner 1943 in culture experiments: Evidence for genotypic variability. Protist, 161, 78–90.

    Article  PubMed  Google Scholar 

  • Brockhurst, M. A., Hochberg, M. E., Bell, T., & Buckling, A. (2006). Character displacement promotes cooperation in bacterial biofilms. Current Biology, 16, 2030–2034.

    Article  PubMed  CAS  Google Scholar 

  • Brockhurst, M. A., Morgan, A. D., Rainey, P. B., & Buckling, A. (2003). Population mixing accelerates coevolution. Ecology Letters, 6, 975–979.

    Article  Google Scholar 

  • Broom, M., Tang, Q., & Waxman, D. (2003). Mathematical analysis of a model describing evolution of an asexual population in a changing environment. Mathematical Biosciences, 186, 93–108.

    Article  PubMed  CAS  Google Scholar 

  • Buckling, A., Brockhurst, M. A., Travisano, M., & Rainey, P. B. (2007). Experimental adaptation to high and low quality environments under different scales of temporal variation. Journal of Evolutionary Biology, 20, 296–300.

    Article  PubMed  CAS  Google Scholar 

  • Buckling, A., Kassen, R., Bell, G., & Rainey, P. (2000). Disturbance and diversity in experimental microcosms. Nature, 408, 961–964.

    Article  PubMed  CAS  Google Scholar 

  • Buckling, A., MacLean, R. C., Brockhurst, M., & Colegrave, N. (2009). The beagle in a bottle. Nature, 457, 824–829.

    Article  PubMed  CAS  Google Scholar 

  • Burch, L. C., & Chao, L. (1999). Evolution by small steps and rugged landscapes in the RNA virus ϕ6. Genetics, 151, 921–927.

    PubMed  CAS  Google Scholar 

  • Chevin, L.-M., Lande, R., & Mace, G. M. (2010). Adaptation, plasticity, and extinction in a changing environment: Towards a predictive theory. PLoS Biology, 8, e1000357. doi:10.1371/journal.pbio.1000357.

    Article  PubMed  Google Scholar 

  • Collins, S. (2010). Competition limits adaptation and productivity in a photosynthetic alga at elevated CO2. Proceedings of the Royal Society of London. Series B. doi:10.1098/rspb.2010.1173.

  • Collins, S., & Bell, G. (2004). Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga. Nature, 431, 566–569.

    Article  PubMed  CAS  Google Scholar 

  • Collins, S., & de Meaux, J. (2009). Adaptation to different rates of environmental change in Chlamydomonas. Evolution, 63, 2952–2965.

    Article  PubMed  Google Scholar 

  • Collins, S., de Meaux, J., & Acquisti, C. (2007). Adaptive walks towards a moving optimum. Genetics, 176, 1089–1099.

    Article  PubMed  CAS  Google Scholar 

  • Collins, S., Sueltemeyer, D., & Bell, G. (2006). Rewinding the tape: Selection of algae adapted to high CO2 at current and Pleistocene levels of CO2. Evolution, 60, 1392–1401.

    PubMed  CAS  Google Scholar 

  • Cooper, T. F., & Lenski, R. E. (2010). Experimental evolution with E. coli in diverse resource environments. I. Fluctuating environments promote divergence of replicate populations. BMC Evolutionary Biology, 10, 11.

    Article  PubMed  Google Scholar 

  • Dallinger, W. H. (1887). The President’s Address. Journal. Royal Microscopical Society, 7, 184–199.

    Google Scholar 

  • De Kluijver, A., Soetaert, K., Schulz, K. G., Riebesell, U., Bellerby, R. G. J., & Middelburg, J. J. (2010). Carbon fluxes in natural plankton communities under elevated CO2 levels: A stable isotope labeling study. Biogeosciences Discussions, 7, 3257–3295.

    Article  Google Scholar 

  • de Mazancourt, C., Johnson, E., & Barraclough, T. G. (2008). Biodiversity inhibits species’ evolutionary responses to changing environments. Ecology Letters, 11, 380–388.

    Article  PubMed  Google Scholar 

  • Decaestecker, E., Gaba, S., Raeymaekers, J. A. M., Stoks, R., Van Kerckhoven, L., Ebert, D., et al. (2007). Host-parasite ‘Red Queen’ dynamics archived in pond sediment. Nature, 450, 870–873.

    Article  PubMed  CAS  Google Scholar 

  • Devantier, R., Scheithauer, B., Villas-Bôas, S. G., Pedersen, S., & Olsson, L. (2005). Metabolite profiling for analysis of yeast stress response during very high gravity ethanol fermentations. Biotechnology and Bioengineering, 90, 703–714.

    Article  PubMed  CAS  Google Scholar 

  • Elena, S. F., & Lenski, R. E. (2003). Evolution experiments with microorganisms: The dynamics and genetic bases of adaptation. Nature Reviews. Genetics, 4, 457–469.

    Article  PubMed  CAS  Google Scholar 

  • Falkowski, P. G., & Oliver, M. J. (2007). Mix and match: How climate selects phytoplankton. Nature Reviews. Microbiology, 5, 813–819.

    Article  PubMed  CAS  Google Scholar 

  • Falkowski, P., et al. (2000). The global carbon cycle: A test of our knowledge of earth as a system. Science, 290, 291–296.

    Article  PubMed  CAS  Google Scholar 

  • Forde, S. E., Beardmore, R. E., Gudelj, I., Arkin, S. S., Thompson, J. N., & Hurst, L. D. (2008). Understanding the limits to generalizability of experimental evolutionary models. Nature, 455, 220–223.

    Article  PubMed  CAS  Google Scholar 

  • Frias-Lopez, J., Shi, Y., Tyson, G. W., Coleman, M. L., Shuster, S. C., & Chisholm, S. W. (2008). Microbial community gene expression in ocean surface waters. Proceedings of the National Academy of Sciences of the United States of America, 105, 3805–3810.

    Article  PubMed  CAS  Google Scholar 

  • Gandon, S., Buckling, A., Decaestecker, E., & Day, T. (2008). Host-parasite coevolution and patterns of adaptation across time and space. Journal of Evolutionary Biology, 21, 1861–1866.

    Article  PubMed  CAS  Google Scholar 

  • Garland, T., & Rose, M. R. (Eds.). (2009). Experimental evolution. Concepts, methods, and applications of selection experiments. Berkley and Los Angeles: University of California Press.

    Google Scholar 

  • Gibson, B. R., Lawrence, S. J., Leclaire, J. P., Powell, C. D., & Smart, K. A. (2007). Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiology Reviews, 31, 535–569.

    Article  PubMed  CAS  Google Scholar 

  • Gillespie, J. H. (1973). Natural selection with varying selection coefficients—A haploid model. Genetical Research, 21, 115–120.

    Article  Google Scholar 

  • Gomulkiewicz, R., & Kirkpatrick, M. (1992). Quantitative genetics and the evolution of reaction norms. Evolution, 46, 390–411.

    Article  Google Scholar 

  • Haldane, J. B. S. (1949). Parental and fraternal correlations for fitness. Annals of Eugenics, 14, 288–292.

    PubMed  CAS  Google Scholar 

  • Hoegh-Guldberg, O., & Bruno, J. F. (2010). The impact of climate change on the world’s marine ecosystems. Science, 328, 1523–1528.

    Article  PubMed  CAS  Google Scholar 

  • Jessup, C. M., Kassen, R., Forde, S. E., Kerr, B., Buckling, A., Rainey, P. B., et al. (2004). Big questions, small worlds: Microbial model systems in ecology. Trends in Ecology & Evolution, 19, 189–197.

    Article  Google Scholar 

  • Jõers, A., Kaldalu, N., & Tenson, T. (2010). The frequency of persisters in Escherichia coli reflects the kinetics of awakening from dormancy. Journal of Bacteriology, 192, 3379–3384.

    Article  PubMed  Google Scholar 

  • Johnson, Z. I., Zinser, E. R., Coe, A., McNulty, N. P., Woodward, E. M., & Chisholm, S. W. (2006). Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science, 311, 1737–1740.

    Article  PubMed  CAS  Google Scholar 

  • Kassen, R. (2002). The experimental evolution of specialists, generalists, and the maintenance of diversity. Journal of Evolutionary Biology, 15, 173–190.

    Article  Google Scholar 

  • Kassen, R., & Bataillon, T. (2006). Distribution of fitness effects among beneficial mutations before selection in experimental populations of bacteria. Nature Genetics, 38, 484–488.

    Article  PubMed  CAS  Google Scholar 

  • Kassen, R., & Bell, G. (1998). Experimental evolution in Chlamydomonas. IV. Selection in environments that vary through time at different scales. Heredity, 80, 732–741.

    Article  Google Scholar 

  • Kimura, M. (1958). On the change of population fitness by natural selection. Heredity, 12, 145–167.

    Article  Google Scholar 

  • Kopp, M., & Hermisson, J. (2007). Adaptation of a quantitative trait to a moving optimum. Genetics, 176, 715–719.

    Article  PubMed  CAS  Google Scholar 

  • Leibler, S., & Kussell, E. (2010). Individual histories and selection in heterogenous populations. Proceedings of the National Academy of Sciences of the United States of America, 107, 13183–13188.

    Article  PubMed  CAS  Google Scholar 

  • Lenski, R. E., & Travisano, M. (1994). Dynamics of adaptation and diversification: A 10,000-generation experiment with bacterial populations. Proceedings of the National Academy of Sciences of the United States of America, 91, 6808–6814.

    Article  PubMed  CAS  Google Scholar 

  • Levins, R. (1968). Evolution in changing environments: Some theoretical explorations. Princeton: Princeton University Press.

    Google Scholar 

  • Lynch, M., & Lande, R. (1993). Evolution and extinction in response to environmental change. In P. Kaveiva, J. Kingsolver, & R. Huey (Eds.), Biotic interactions and global change (pp. 234–250). Sunderland, MA: Sinauer.

    Google Scholar 

  • MacLean, R. C., & Bell, G. (2002). Experimental adaptive radiation in Pseudomonas. The American Naturalist, 160, 569–581.

    Article  PubMed  Google Scholar 

  • Moore, L. R., Ostrowski, M., Sclanlan, D. J., Feren, K., & Sweetsir, T. (2005). Ecotypic variation in phosphorus acquisition mechanisms within marine picocyanobacteria. Aquatic Microbial Ecology, 39, 257–269.

    Article  Google Scholar 

  • Mustonen, V., & Lässig, M. (2009). From fitness landscapes to seascapes: Non-equilibrium dynamics of selection and adaptation. Trends in Genetics, 25, 111–119.

    Article  PubMed  CAS  Google Scholar 

  • Mustonen, V., & Lässig, M. (2010). Fitness flux and ubiquity of adaptive evolution. Proceedings of the National Academy of Sciences of the United States of America, 107, 4248–4253.

    Article  PubMed  CAS  Google Scholar 

  • Novak, M., Pfeiffer, T., Lenski, R. E., Sauer, U., & Bonhoeffer, S. (2006). Experimental tests for an evolutionary trade-off between growth rate and yield in E. coli. The American Naturalist, 168, 242–251.

    Article  PubMed  Google Scholar 

  • Ostrowski, E. A., Woods, R. J., & Lenski, R. E. (2008). The genetic basis of parallel and divergent phenotypic responses in evolving populations of Escherichia coli. Proceedings of the Royal Society of London Series B, 275, 277–284.

    Article  PubMed  CAS  Google Scholar 

  • Perron, G. G., Zasloff, M., & Bell, G. (2006). Experimental evolution of resistance to an antimicrobial peptide. Proceedings of the Royal Society of London Series B, 273, 251–256.

    Article  PubMed  CAS  Google Scholar 

  • Rainey, P. B., & Travisano, M. (1998). Adaptive radiation in a heterogeneous environment. Nature, 394, 69–72.

    Article  PubMed  CAS  Google Scholar 

  • Reboud, X., & Bell, G. (1997). Experimental evolution in Chlamydomonas III. Evolution of specialist and generalist types in environments that vary in space and time. Heredity, 78, 507–514.

    Article  Google Scholar 

  • Riebesell, U., et al. (2007). Enhanced biological consumption in a high CO2 ocean. Nature, 450, 545–548.

    Article  PubMed  CAS  Google Scholar 

  • Rost, B., Zondervan, I., & Wolf-Gladrow, D. (2008). Sensitivity of phytoplankton to future changes in ocean carbonate chemistry: Current knowledge, contradictions and research directions. Marine Ecology Progress Series, 373, 227–237.

    Article  CAS  Google Scholar 

  • Rozen, D. E., de Visser, J. A. G. M., & Gerrish, P. J. (2002). Fitness effects of fixed beneficial mutations in microbial populations. Current Biology, 12, 1040–1045.

    Article  PubMed  CAS  Google Scholar 

  • Rozen, D. E., Philippe, N., de Visser, J. A., Lenski, R. E., & Schneider, D. (2009). Death and cannibalism in a seasonal environment facilitate bacterial coexistence. Ecology Letters, 12, 34–44.

    Article  PubMed  Google Scholar 

  • Rynearson, T. A., & Armbrust, E. V. (2005). Maintenance of clonal diversity during a spring bloom of the centric diatom Ditylum brightwellii. Molecular Ecology, 14, 1631–1640.

    Article  PubMed  Google Scholar 

  • Samani, P., & Bell, G. (2010). Adaptation of experimental yeast populations to stressful conditions in relation to population size. Journal of Evolutionary Biology, 23, 791–796.

    Article  PubMed  CAS  Google Scholar 

  • Schlichting, C. D., & Pigliucci, M. (1995). Gene regulation, quantitative genetics and the evolution of reaction norms. Evolutionary Ecology, 9, 154–168.

    Article  Google Scholar 

  • Spencer, C. C., Saxer, G., Travisano, M., & Doebeli, M. (2007). Seasonal oscillations maintain diversity in bacterial microcosms. Evolutionary Ecology Research, 9, 775–787.

    Google Scholar 

  • Spiers, A. J., Kahn, S. G., Bohannon, J., Travisano, M., & Rainey, P. B. (2002). Adaptive divergence in experimental populations of Pseudomonas fluorescens. I. Genetic and phenotypic bases of wrinkly spreader fitness. Genetics, 161, 33–46.

    PubMed  CAS  Google Scholar 

  • Tortell, P. D., et al. (2008). CO2 sensitivity of Southern ocean phytoplankton. Geophysical Research Letters, 35, L04605.

    Article  Google Scholar 

  • Tuljapurkar, S., Gaillard, J.-M., & Coulson, T. (2009). From stochastic environments to life histories and back. Philosophical Transactions of the Royal Society of London. Series B, 364, 1499–1509.

    Article  PubMed  Google Scholar 

  • Van Tienderen, P. H. (1991). Evolution of generalists and specialists in spatially heterogenous environments. Evolution, 45, 1317–1331.

    Article  Google Scholar 

  • Venail, P. A., MacLean, R. C., Bouvier, T., Brockhurst, M. A., Hochberg, M. E., & Mouquet, N. (2008). Diversity and productivity peak at intermediate dispersal rate in evolving communities. Nature, 452, 210–214.

    Article  PubMed  CAS  Google Scholar 

  • Vogwill, T., Fenton, A., Buckling, A., Hochberg, M. E., & Brockhurst, M. A. (2009). Source populations act as coevolutionary pacemakers in experimental selection mosaics containing hotspots and coldspots. The American Naturalist, 173, e155–e160.

    Article  Google Scholar 

  • Weinreich, D. M., Delany, N. F., DePristo, M. A., & Hartl, D. L. (2006). Darwinian evolution can follow only very few mutational paths to fitter proteins. Science, 312, 111–114.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I am supported by a NERC fellowship (NE/E013066/1). I thank N. Barton, N. Colegrave, H. Kuehne and M. Lässig for comments and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinéad Collins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, S. Many Possible Worlds: Expanding the Ecological Scenarios in Experimental Evolution. Evol Biol 38, 3–14 (2011). https://doi.org/10.1007/s11692-010-9106-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-010-9106-3

Keywords

Navigation