Skip to main content
Log in

Investigating the relation between striatal volume and IQ

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

The volume of the input region of the basal ganglia, the striatum, is reduced with aging and in a number of conditions associated with cognitive impairment. The aim of the current study was to investigate the relation between the volume of striatum and general cognitive ability in a sample of 303 healthy children that were sampled to be representative of the population of the United States. Correlations between the WASI-IQ and the left striatum, composed of the caudate nucleus and putamen, were significant. When these data were analyzed separately for male and female children, positive correlations were significant for the left striatum in male children only. This brain structure-behavior relation further promotes the increasingly accepted view that the striatum is intimately involved in higher order cognitive functions. Our results also suggest that the importance of these brain regions in cognitive ability might differ for male and female children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abernethy, L. J., Cooke, R. W., & Foulder-Hughes, L. (2004). Caudate and hippocampal volumes, intelligence, and motor impairment in 7-year-old children who were born preterm. Pediatric Research, 55(5), 884–893.

    Article  PubMed  Google Scholar 

  • Achenbach, T. M., & Dumenci, L. (2001). Advances in empirically based assessment: revised cross-informant syndromes and new DSM-oriented scales for the CBCL, YSR, and TRF: comment on Lengua, Sadowksi, Friedrich, and Fischer (2001). [Comment]. Journal of Consulting and Clinical Psychology, 69(4), 699–702.

    Article  CAS  PubMed  Google Scholar 

  • Achenbach, T. M., & Ruffle, T. M. (2000). The Child Behavior Checklist and related forms for assessing behavioral/emotional problems and competencies. [Review]. Pediatrics in Review, 21(8), 265–271.

    Article  CAS  PubMed  Google Scholar 

  • Ahn, M. S., Breeze, J. L., Makris, N., Kennedy, D. N., Hodge, S. M., Herbert, M. R., et al. (2007). Anatomic brain magnetic resonance imaging of the basal ganglia in pediatric bipolar disorder. Journal of Affective Disorders, 104(1–3), 147–154.

    Article  PubMed  Google Scholar 

  • Andreasen, N. C., Flaum, M., Swayze, V., 2nd, O’Leary, D. S., Alliger, R., Cohen, G., et al. (1993). Intelligence and brain structure in normal individuals. The American Journal of Psychiatry, 150(1), 130–134.

    CAS  PubMed  Google Scholar 

  • Bellebaum, C., & Daum, I. (2008). Learning-related changes in reward expectancy are reflected in the feedback-related negativity. European Journal of Neuroscience, 27(7), 1823–1835.

    Article  PubMed  Google Scholar 

  • Bellebaum, C., Koch, B., Schwarz, M., & Daum, I. (2008). Focal basal ganglia lesions are associated with impairments in reward-based reversal learning. Brain, 131(Pt 3), 829–841.

    Article  PubMed  Google Scholar 

  • Bloch, M. H., Leckman, J. F., Zhu, H., & Peterson, B. S. (2005). Caudate volumes in childhood predict symptom severity in adults with Tourette syndrome. Neurology, 65(8), 1253–1258.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carmona, S., Bassas, N., Rovira, M., Gispert, J. D., Soliva, J. C., Prado, M., et al. (2007). Pediatric OCD structural brain deficits in conflict monitoring circuits: a voxel-based morphometry study. Neuroscience Letters, 421(3), 218–223.

    Article  CAS  PubMed  Google Scholar 

  • Castellanos, F. X., Lee, P. P., Sharp, W., Jeffries, N. O., Greenstein, D. K., Clasen, L. S., et al. (2002). Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. Journal of the American Medical Association, 288(14), 1740–1748.

    Article  PubMed  Google Scholar 

  • Chang, L., Smith, L. M., LoPresti, C., Yonekura, M. L., Kuo, J., Walot, I., et al. (2004). Smaller subcortical volumes and cognitive deficits in children with prenatal methamphetamine exposure. Psychiatry Research, 132(2), 95–106.

    Article  CAS  PubMed  Google Scholar 

  • Chang, L., Cloak, C., Patterson, K., Grob, C., Miller, E. N., & Ernst, T. (2005). Enlarged striatum in abstinent methamphetamine abusers: a possible compensatory response. Biological Psychiatry, 57(9), 967–974.

    Article  CAS  PubMed  Google Scholar 

  • Collins, D. L., Neelin, P., Peters, T. M., & Evans, A. C. (1994). Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography, 18(2), 192–205.

    Article  CAS  PubMed  Google Scholar 

  • de Jong, L. W., van der Hiele, K., Veer, I. M., Houwing, J. J., Westendorp, R. G., Bollen, E. L., et al. (2008). Strongly reduced volumes of putamen and thalamus in Alzheimer’s disease: an MRI study. Brain, 131(Pt 12), 3277–3285.

    Article  PubMed  Google Scholar 

  • Degos, J. D., da Fonseca, N., Gray, F., & Cesaro, P. (1993). Severe frontal syndrome associated with infarcts of the left anterior cingulate gyrus and the head of the right caudate nucleus. A clinico-pathological case. Brain, 116(Pt 6), 1541–1548.

    PubMed  Google Scholar 

  • Di Martino, A., Scheres, A., Margulies, D. S., Kelly, A. M., Uddin, L. Q., Shehzad, Z., et al. (2008). Functional connectivity of human striatum: a resting state FMRI study. [Research Support, Non-U.S. Gov’t]. Cerebral Cortex, 18(12), 2735–2747.

    Article  PubMed  Google Scholar 

  • Draganski, B., & May, A. (2008). Training-induced structural changes in the adult human brain. Behavioural Brain Research, 192(1), 137–142.

    Article  CAS  PubMed  Google Scholar 

  • Ducharme, S., Hudziak, J. J., Botteron, K. N., Albaugh, M. D., Nguyen, T. V., Karama, S., et al. (2012). Decreased regional cortical thickness and thinning rate are associated with inattention symptoms in healthy children. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Journal of the American Academy of Child and Adolescent Psychiatry, 51(1), 18–27 e12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans, A. C. (2006). The NIH MRI study of normal brain development. NeuroImage, 30(1), 184–202.

    Article  PubMed  Google Scholar 

  • Floresco, S. B., Tse, M. T., & Ghods-Sharifi, S. (2008). Dopaminergic and glutamatergic regulation of effort- and delay-based decision making. Neuropsychopharmacology, 33(8), 1966–1979.

    Article  CAS  PubMed  Google Scholar 

  • Ganjavi, H., Lewis, J. D., Bellec, P., MacDonald, P. A., Waber, D. P., Evans, A. C., et al. (2011). Negative associations between corpus callosum midsagittal area and IQ in a representative sample of healthy children and adolescents. [Multicenter Study Research Support, N.I.H., Extramural]. PLoS One, 6(5), e19698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein, J. M., Seidman, L. J., Horton, N. J., Makris, N., Kennedy, D. N., Caviness, V. S., Jr., et al. (2001). Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cerebral Cortex, 11(6), 490–497.

    Article  CAS  PubMed  Google Scholar 

  • Haier, R. J., Karama, S., Leyba, L., & Jung, R. E. (2009). MRI assessment of cortical thickness and functional activity changes in adolescent girls following three months of practice on a visual-spatial task. BMC Research Notes, 2, 174.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jernigan, T. L., Ostergaard, A. L., & Fennema-Notestine, C. (2001). Mesial temporal, diencephalic, and striatal contributions to deficits in single word reading, word priming, and recognition memory. Journal of the International Neuropsychological Society, 7(1), 63–78.

    Article  CAS  PubMed  Google Scholar 

  • Johansson, B. B. (2004). Brain plasticity in health and disease. The Keio Journal of Medicine, 53(4), 231–246.

    Article  PubMed  Google Scholar 

  • Johnson, E. S., & Meade, A. C. (1987). Developmental patterns of spatial ability: an early sex difference. Child Development, 58(3), 725–740.

    Article  CAS  PubMed  Google Scholar 

  • Kermadi, I., & Joseph, J. P. (1995). Activity in the caudate nucleus of monkey during spatial sequencing. Journal of Neurophysiology, 74(3), 911–933.

    CAS  PubMed  Google Scholar 

  • Kesler, S. R., Reiss, A. L., Vohr, B., Watson, C., Schneider, K. C., Katz, K. H., et al. (2008). Brain volume reductions within multiple cognitive systems in male preterm children at age twelve. Journal of Pediatrics, 152(4), 513–520. 520 e511.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, D. K., Kim, B. L., Sohn, S. E., Lim, S. W., Na, D. G., Paik, C. H., et al. (1999). Candidate neuroanatomic substrates of psychosis in old-aged depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 23(5), 793–807.

    Article  CAS  Google Scholar 

  • Kim, M. J., Hamilton, J. P., & Gotlib, I. H. (2008). Reduced caudate gray matter volume in women with major depressive disorder. Psychiatry Research, 164(2), 114–122.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar, R., Ahdout, R., Macey, P. M., Woo, M. A., Avedissian, C., Thompson, P. M., et al. (2009). Reduced caudate nuclei volumes in patients with congenital central hypoventilation syndrome. Neuroscience, 163(4), 1373–1379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange, N., Froimowitz, M. P., Bigler, E. D., & Lainhart, J. E. (2010). Associations between IQ, total and regional brain volumes, and demography in a large normative sample of healthy children and adolescents. Developmental Neuropsychology, 35(3), 296–317.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lenroot, R. K., Gogtay, N., Greenstein, D. K., Wells, E. M., Wallace, G. L., Clasen, L. S., et al. (2007). Sexual dimorphism of brain developmental trajectories during childhood and adolescence. NeuroImage, 36(4), 1065–1073.

    Article  PubMed  PubMed Central  Google Scholar 

  • Looi, J. C., Lindberg, O., Zandbelt, B. B., Ostberg, P., Andersen, C., Botes, L., et al. (2008). Caudate nucleus volumes in frontotemporal lobar degeneration: differential atrophy in subtypes. AJNR. American Journal of Neuroradiology, 29(8), 1537–1543.

    Article  CAS  PubMed  Google Scholar 

  • Lucas, C. P., Zhang, H., Fisher, P. W., Shaffer, D., Regier, D. A., Narrow, W. E., et al. (2001). The DISC Predictive Scales (DPS): efficiently screening for diagnoses. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Validation Studies]. Journal of the American Academy of Child and Adolescent Psychiatry, 40(4), 443–449.

    Article  CAS  PubMed  Google Scholar 

  • MacDonald, P. A., & Monchi, O. (2011). Differential effects of dopaminergic therapies on dorsal and ventral striatum in Parkinson’s disease: implications for cognitive function. Parkinson’s Disease, 2011, 572743.

    PubMed  PubMed Central  Google Scholar 

  • MacDonald, P. A., MacDonald, A. A., Seergobin, K. N., Tamjeedi, R., Ganjavi, H., Provost, J. S., et al. (2011). The effect of dopamine therapy on ventral and dorsal striatum-mediated cognition in Parkinson’s disease: support from functional MRI. Brain, 134(Pt 5), 1447–1463.

    Article  PubMed  Google Scholar 

  • MacDonald, A. A., Monchi, O., Seergobin, K. N., Ganjavi, H., Tamjeedi, R., & MacDonald, P. A. (2013). Parkinson’s disease duration determines effect of dopaminergic therapy on ventral striatum function. Movement Disorders, 28(2), 153–160.

    Article  CAS  PubMed  Google Scholar 

  • Mandelli, M. L., Savoiardo, M., Minati, L., Mariotti, C., Aquino, D., Erbetta, A., et al. (2010). Decreased diffusivity in the caudate nucleus of presymptomatic huntington disease gene carriers: which explanation? AJNR. American Journal of Neuroradiology, 31(4), 706–710.

    Article  CAS  PubMed  Google Scholar 

  • Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Research. Brain Research Reviews, 31(2–3), 236–250.

    Article  CAS  PubMed  Google Scholar 

  • Moffat, S. D., Kennedy, K. M., Rodrigue, K. M., & Raz, N. (2007). Extrahippocampal contributions to age differences in human spatial navigation. Cerebral Cortex, 17(6), 1274–1282.

    Article  PubMed  Google Scholar 

  • Monchi, O., Petrides, M., Strafella, A. P., Worsley, K. J., & Doyon, J. (2006). Functional role of the basal ganglia in the planning and execution of actions. Annals of Neurology, 59(2), 257–264.

    Article  PubMed  Google Scholar 

  • Ostby, Y., Tamnes, C. K., Fjell, A. M., Westlye, L. T., Due-Tonnessen, P., & Walhovd, K. B. (2009). Heterogeneity in subcortical brain development: a structural magnetic resonance imaging study of brain maturation from 8 to 30 years. Journal of Neuroscience, 29(38), 11772–11782.

    Article  PubMed  Google Scholar 

  • Peinemann, A., Schuller, S., Pohl, C., Jahn, T., Weindl, A., & Kassubek, J. (2005). Executive dysfunction in early stages of Huntington’s disease is associated with striatal and insular atrophy: a neuropsychological and voxel-based morphometric study. Journal of the Neurological Sciences, 239(1), 11–19.

    Article  PubMed  Google Scholar 

  • Peterson, B., Riddle, M. A., Cohen, D. J., Katz, L. D., Smith, J. C., Hardin, M. T., et al. (1993). Reduced basal ganglia volumes in Tourette’s syndrome using three-dimensional reconstruction techniques from magnetic resonance images. Neurology, 43(5), 941–949.

    Article  CAS  PubMed  Google Scholar 

  • Postuma, R. B., & Dagher, A. (2006). Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. [Meta-Analysis]. Cerebral Cortex, 16(10), 1508–1521.

    Article  PubMed  Google Scholar 

  • Raz, N., Rodrigue, K. M., Kennedy, K. M., Head, D., Gunning-Dixon, F., & Acker, J. D. (2003). Differential aging of the human striatum: longitudinal evidence. AJNR. American Journal of Neuroradiology, 24(9), 1849–1856.

    PubMed  Google Scholar 

  • Reiss, A. L., Faruque, F., Naidu, S., Abrams, M., Beaty, T., Bryan, R. N., et al. (1993). Neuroanatomy of Rett syndrome: a volumetric imaging study. Annals of Neurology, 34(2), 227–234.

    Article  CAS  PubMed  Google Scholar 

  • Rieger, M., Gauggel, S., & Burmeister, K. (2003). Inhibition of ongoing responses following frontal, nonfrontal, and basal ganglia lesions. Neuropsychology, 17(2), 272–282.

    Article  PubMed  Google Scholar 

  • Rotge, J. Y., Guehl, D., Dilharreguy, B., Tignol, J., Bioulac, B., Allard, M., et al. (2009). Meta-analysis of brain volume changes in obsessive-compulsive disorder. Biological Psychiatry, 65(1), 75–83.

    Article  PubMed  Google Scholar 

  • Seger, C. A., Peterson, E. J., Cincotta, C. M., Lopez-Paniagua, D., & Anderson, C. W. (2010). Dissociating the contributions of independent corticostriatal systems to visual categorization learning through the use of reinforcement learning modeling and Granger causality modeling. NeuroImage, 50(2), 644–656.

    Article  PubMed  PubMed Central  Google Scholar 

  • Semrud-Clikeman, M., Pliszka, S. R., Lancaster, J., & Liotti, M. (2006). Volumetric MRI differences in treatment-naive vs chronically treated children with ADHD. Neurology, 67(6), 1023–1027.

    Article  PubMed  Google Scholar 

  • Shaffer, D., Fisher, P., Lucas, C. P., Dulcan, M. K., & Schwab-Stone, M. E. (2000). NIMH Diagnostic Interview Schedule for Children Version IV (NIMH DISC-IV): description, differences from previous versions, and reliability of some common diagnoses. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Journal of the American Academy of Child and Adolescent Psychiatry, 39(1), 28–38.

    Article  CAS  PubMed  Google Scholar 

  • Silk, T. J., Vance, A., Rinehart, N., Bradshaw, J. L., & Cunnington, R. (2009). Structural development of the basal ganglia in attention deficit hyperactivity disorder: a diffusion tensor imaging study. Psychiatry Research, 172(3), 220–225.

    Article  PubMed  Google Scholar 

  • Singer, H. S., Reiss, A. L., Brown, J. E., Aylward, E. H., Shih, B., Chee, E., et al. (1993). Volumetric MRI changes in basal ganglia of children with Tourette’s syndrome. Neurology, 43(5), 950–956.

    Article  CAS  PubMed  Google Scholar 

  • Skranes, J. S., Vik, T., Nilsen, G., Smevik, O., Andersson, H. W., & Brubakk, A. M. (1997). Cerebral magnetic resonance imaging and mental and motor function of very low birth weight children at six years of age. Neuropediatrics, 28(3), 149–154.

    Article  CAS  PubMed  Google Scholar 

  • Soliva, J. C., Fauquet, J., Bielsa, A., Rovira, M., Carmona, S., Ramos-Quiroga, J. A., et al. (2010). Quantitative MR analysis of caudate abnormalities in pediatric ADHD: proposal for a diagnostic test. Psychiatry Research, 182(3), 238–243.

    Article  PubMed  Google Scholar 

  • Wickens, J. R., Budd, C. S., Hyland, B. I., & Arbuthnott, G. W. (2007). Striatal contributions to reward and decision making: making sense of regional variations in a reiterated processing matrix. Annals of the New York Academy of Sciences, 1104, 192–212.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Penny MacDonald was supported by a CIHR Clinician-Scientist Award. Sherif Karama receives salary support from the Fonds de recherche en santé du Québec.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penny A. MacDonald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacDonald, P.A., Ganjavi, H., Collins, D.L. et al. Investigating the relation between striatal volume and IQ. Brain Imaging and Behavior 8, 52–59 (2014). https://doi.org/10.1007/s11682-013-9242-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-013-9242-3

Keywords

Navigation